PUBLIC

Code Assessment

of the SafeguardPool

Smart Contracts

June 27, 2023

Produced for

by

(S: CHAINSECURITY

Contents

Executive Summary
Assessment Overview
Limitations and use of report
Terminology

Findings

Resolved Findings

Informational

o N o o~ W N PP

Notes

@ Swaap Labs - SafeguardPool - ChainSecurity - © Decentralized Security AG

10
11
12
13
19
21

https://chainsecurity.com

1 Executive Summary

Dear Swaap Finance team,

Thank you for trusting us to help Swaap Labs with this security audit. Our executive summary provides
an overview of subjects covered in our audit of the latest reviewed contracts of SafeguardPool according
to Scope to support you in forming an opinion on their security risks.

Swaap Labs implements a Safeguard Pool, utilizing the Balancer V2 infrastructure. It is an AMM pool
with restrictions on certain swap transactions, in accordance with predefined parameters, known as
safeguards. To perform a swap, a valid quote from a privileged signer must be provided. This quote
encapsulates the swap price and associated penalties.

The most critical subjects covered in our audit are asset solvency, functional correctness, and precision
of arithmetic operations. Security regarding all the aforementioned subjects is good.

The general subjects covered are integration with external systems, signature handling and sanity
checks. Security regarding signature handling and sanity checks is high. The pool is integrated with the
Balancer V2 infrastructure, which is an out-of-scope system. The issue Reentrancy via Vault was fixed,
however other not yet discovered issues may remain since the Balancer V2 infrastructure is not covered
by this audit. Thus, security regarding external systems integration is improvable.

In summary, we find that the codebase provides a good level of security regarding the most critical
subjects, assuming that the Balancer V2 infrastructure does not contain any severe issues.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

@ Swaap Labs - SafeguardPool - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings

Below we provide a brief numerical overview of the findings and how they have been addressed.

EIED-severity Findings

(C)-Severity Findings

¥ Code Corrected

(Medium)-Severity Findings

¥ Code Corrected

(Low)-Severity Findings

¥ Code Corrected

¥ Risk Accepted

@ Swaap Labs - SafeguardPool - ChainSecurity - © Decentralized Security AG

https://chainsecurity.com

2 Assessment Overview

In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope

The assessment was performed on the source code files inside the
. I pkg/ saf eguar d- pool / contracts folder of the SafeguardPool repository based on the
documentation files.

The scope consists of the five solidity smart contracts:
1. ChainlinkUtils.sol
2. SafeguardFactory.sol
3. SafeguardMath.sol
4. SafeguardPool.sol

5. SignatureSafeguard.sol

The table below indicates the code versions relevant to this report and when they were received.

Date Commit Hash Note
\Y
1 | 08 May 2023 | 6537ca745fbad4aaf8b971b89e1f7043ce7blb0a3 Initial Version
2 | 07 June 2023 | 1fb3afd6ee78alc0f7686fb18b2bch59b8d2255b Version with fixes
3 | 12 June 2023 | 227eb2fc6fbcf4477bb4329f8bdb7b83f619fdf0 Fix rounding direction
4 | 21 June 2023 | b6e118f19dccl79al11f46fdf51d749ae5¢c206cas Fix Vault reentrancy

For the solidity smart contracts, the compiler version 0. 7. 1 was chosen.

2.1.1 Excluded from scope

Any other files not explicitty mentioned in the scope section. In particular tests, scripts, external
dependencies, and configuration files are not part of the audit scope.

2.2 Assumptions

This assessment was performed under certain assumptions:
» The system will be used with ERC20 tokens that do not break any internal accounting.

* It is expected, that swaps with valid quotes can revert due to the changes of the smart contract state
caused by other swaps, joins or exits.

» Assessed system will be deployed properly and initialized with the correct parameters.

@ Swaap Labs - SafeguardPool - ChainSecurity - © Decentralized Security AG 5

https://chainsecurity.com

2.3 System Overview

This system overview describes the initially received version ((Version 1)) of the contracts as defined in the
Assessment Overview.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

Swaap Labs offers a SafeguardPool - an AMM pool that restricts certain swaps, based on a set of criteria
that are called safeguards. The system is based on Balancer V2 architecture. The default Vault Balancer
V2 holds and manages accounting for all tokens in each pool. And the SafeguardPool contract provides
logic to perform the operations (swaps / joins / exits) on those assets.

SafeguardPool features a quote-directed safeguards-protected swap, a quote must be submitted as part
of the user Dat a which: (1) is signed by a privileged signer off-chain. (2) encodes the swap price and the
penalty parameters. (3) is bound to each user. As a result, the quote sets the price and slippage of a
future swap. In addition, a swap with a certain quote will only succeed if all the safeguards are passed.
An imbalanced join (providing liquidity) / exit (withdrawing liquidity) works as a composition of swap and
balanced join/exit. Swap in such joins/exits is restricted by the same criteria as the normal swaps.

Some safeguards are working by comparing the latest on-chain state of the pool with the historical state
of the pool. In detail, 2 values are recorded periodically (every 0.5-1.5 days, depending on configuration)
to capture the performance of the pool liquidity tokens (PT): hodl Bal ancePer PTO and
hodl Bal ancePer PT1. This HODL PT token perfomances are utilized by safeguards to prevent certain
swaps.

Specifically, the following swap safeguards are present:

* Swap Signature Safeguard: checks that the privileged si gner role holder signed the quote
parameters, the signature is not expired and the quot el ndex is not used.

* Fair Pricing Safeguard: checks that the quote price with slippage is within the max deviation
compared to the chainlink price feed.

» Performance Safeguard: checks if the performance of one PT is within the max allowed deviations,
compared to the HODL data.

» Target Balances Safeguard: checks if the total number of output tokens per PT is within the max
deviation from the HODL data.

2.3.1 SafeguardPool

SafeguardPool implements onSwap(), _onlnitiali zePool (), _onJoi nPool (), _onExi t Pool ()
to be called during swap, join and exit.

2.3.1.1 Swap

For each swap, users must submit the following abi encoded data as their user Dat a:
*si gnature-65bytesr, s, v ECDSA signature from si gner role holder.
e quot el ndex - used as an unordered nonce for the signature.
» deadl i ne - signature expiration time
* swapDat a - abi encoded pricing params.
The si gnat ur e should be an ECDSA signature from si gner of following EIP712 hashed struct:
« kind - GIVEN_IN or GIVEN_OUT
* isTokenInTokenO
* sender

* recipient

@ Swaap Labs - SafeguardPool - ChainSecurity - © Decentralized Security AG 6

https://docs.balancer.fi/concepts/vault/#separating-token-accounting-and-pool-logic
https://chainsecurity.com

» keccak256(swapData)
* quotelndex

« deadline - signature-specific deadline. Swap-specific deadline is handled by Vaul t . swap function.

Thus, each signature can only be used by fixed sender and only be received by fixed recipient. Each
guote is one use only and valid only until a certain deadline. The quote dictates swap price and maximum
swap amount.

The swapDat a is an encoded set of pricing parameters:
* address expectedOrigin
* uint256 originBasedSlippage
* bytes32 priceBasedParams: consists of quot eAnount | nPer Cut , and naxSwapAnmount .
* bytes32 quoteBalances: this is packed quot eBal ancel n and quot eBal anceCQut

* bytes32 balanceBasedParams: packed bal anceChangeTol er ance and
bal anceBasedSl i ppage

* bytes32 timeBasedParams: packed st art Ti me and t i neBasedSl| i ppage

In the onSwap function, the exact out token amount per in token amount is computed based on this data
and the bal anceTokenln and bal anceTokenQut provided by the Vault contract. The
guot eAnmount | nPer Qut is an initial swap price for any given swap. The final price of swap is computed
as quot eAnount I nPerQut * penalty. The default penalty is 100%, however, different special
penalties can increase it:

« Balance based penalty: if on-chain bal anceTokenl n or bal anceTokenQut is smaller than the
ones in quot eBal ances, bal anceBasedSl i ppage * max devi ation penalty increase is
applied. If max deviation exceeds bal anceChangeTol er ance, swap is reverted.

« Time based penalty: ti neBasedSl i ppage * (block.tinmestanp - startTinme) is the
penalty increase.

«Origin based penalty: origi nBasedSlippage penalty increase is applied if
expectedOrigin !'= tx.origin.

If specified amount | n (or amountOut) exceeds max SwapAnount the swap reverts.

2.3.1.2 Init, Join and Exit

_onlnitializePool () and _onJoi nPool () can be permissionless if allow list is not enabled,
otherwise, users need to provide a valid signature from the privileged signer which signs the sender and
a deadline. In addition, the remaining time before deadline should be larger than
_MAX_REMAI NI NG_SI GNATURE_VALI DI TY (5 minutes). Upon initialization, a user deposits any amount
of tokens and a constant _I NI TI AL_BPT shares will be minted. There are two types of joins:

e _joi nAl'l Tokensl nFor Exact BPTQut () : will deposit the tokens in a balanced way w.r.t. pool's
balances for the exact shares wanted.

e _joi nExact Tokensl nFor BPTCut () : is equivalent to a swap followed by a balanced join, where
the swap must meet the aforementioned restrictions, including Swap Signature Safeguard.

Similarly, there are two types of exits:

e _exit Exact BPTI nFor TokensCQut () : will withdraw the tokens in a balanced way w.r.t. pool's
balances for the exact shares redeemed.

e _exit BPTI nFor Exact TokensQut () : is equivalent to a swap followed by a balanced exit, where
the swap must meet the aforementioned restrictions, including Swap Signature Safeguard.

@ Swaap Labs - SafeguardPool - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

2.3.1.3 Parameter setters

The following permissioned parameter setters are restricted to the authenticated address:
» setManagementFees: claims the previous management fees and set the new yearly rate.
* setFlexibleOracleStates: update the flexible oracle states.

« setMustAllowlistLPs: join is permissionless if the flag is unset, otherwise join requires a privileged
role's signature.

* setSigner: updates the privileged signer who will sign the quotes and allowed join actions.
« setPerfUpdatelnterval: sets the performance update interval within 0.5 to 1.5 days.

» setMaxPerfDev: sets the max performance deviation within 5%

» setMaxTargetDev: sets the max target deviation within 15%

» setMaxPriceDev: sets the max swap price deviation w.r.t. the current oracle price within 3%

SafeguardPool also inherits the BasePool permissioned functionalities which are also restricted to the
authenticated address:

e pause() : pauses the pool.
e unpause() : unpauses the pool.

« enabl eRecover yMode() : enables the recovery mode where only the balanced exit is executed
without scaling and complex math.

« di sabl eRecover yMode() : disables the recovery mode.

2.3.1.4 Permissionless management functions
The following management functions are permissionless and can be called by everyone.

* eval uat eSt abl esPegSt at es: evaluates the flexible stablecoin oracle price deviations and peg or
unpeg them from constant ONE accordingly. If the deviation is smaller than 0. 2% anyone can come
to peg the price to constant ONE. And if the deviation is larger than 0. 5% anyone can come to
unpeg the price from constant ONE. Therefore the flexible stablecoin oracle only works when there
is a depegging.

e cl ai mvanagenent Fees: claims the management fees (computed based on the time elapsed) by
minting new shares of pool to the fee collector.

e updat ePer f or mance: updates the performance of one unit of pool share when an update interval
has elapsed.

2.3.2 SafeguardPoolFactory

This contract extends the default Balancer V2 BasePool Fact ory.

The cr eat e function of this contract deploys a new SafeguardPool. The access control management of
the newly deployed Saf eguar dPool is delegated to the Vault's Authorizer. Note that the deployment of
new pool is permissionless, only the legitimate pools should be used.

2.3.3 Trust Model

This trust model only covers the contracts in Scope. The access control of the Balancer V2 contracts is
out of scope.

In SafeguardPool, the signer is a privileged role that signhs quotes for all the swaps and joins if allow list is
enabled. It is assumed to be fully trusted, always honest and never to behave against the interest of the
users. As such, it is assumed:

« Signer is always able to produce the quotes (Liveness)

@ Swaap Labs - SafeguardPool - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

« Signer won't produce quotes that do not benefit the pool.
« Signer won't censor the swappers and the liquidity providers (if allow list is enabled).

« It can give different quotes depending on different users. Some may get good prices and penalties
while others may not.

Each Saf eguar dPool can be initialized with Asset sManagers. These default Balancer V2 asset
managers, which can manipulate pools funds, are assumed to be fully trusted. By default,
Saf eguar dPool Fact ory does not allow asset managers.

Any pool deployed is fully trusted. All the parameters that pool deployed specifies (e.g. oracles) are
assumed to be well-thought and correct.

@ Swaap Labs - SafeguardPool - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

3 Limitations and use of report

Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

@ Swaap Labs - SafeguardPool - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

4 Terminology

For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

« Likelihood represents the likelihood of a finding to be triggered or exploited in practice
« Impact specifies the technical and business-related consequences of a finding

« Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment

procedure.

Likelihood Impact
High Medium Low
High CID
Medium GED Low
Low Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

@ Swaap Labs - SafeguardPool - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

5 Findings

In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

- @M Related to vulnerabilities that could be exploited by malicious actors
o CEEED): Architectural shortcomings and design inefficiencies

o (ENTITED: Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

EED-severity Findings E
(C)-Severity Findings 0
(Medium)-Severity Findings 0
(Low)-Severity Findings 1

» Performance Updates Can Be Sandwiched

5.1 Performance Updates Can Be Sandwiched

Correctness TN Risk Accepted)

The performance safeguard validates that the performance based on a unit of pool token does not
deviate too much from the old performance after a swap. Updating the performance is permissionless
when a perf Updat el nterval (within 0.5 to 1.5 days) has elapsed. If the allowed performance
deviation is X% one can bundle a performance update within two swaps to achieve around 2x%deviation,
which breaks the assumption that performance can at most change x% within one
per f Updat el nt erval .

CS-SLSGP-008

@ Swaap Labs - SafeguardPool - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

6 Resolved Findings

Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

(E=)-Severity Findings 0

y g

(CL:0)-Severity Findings 1
* Reentrancy via Vault

(Medium)-Severity Findings 3

* Incorrect Rounding Directions (SRl
* Incorrect Target Deviation Computation (GuuReif=s
» Missing Sanity Checks at Pool Initialization (SR IIEE L)

(Low)-Severity Findings 2
ty g

» Balance Based Penalty Can Be Manipulated

» Price Feed Data Validity Checks

6.1 Reentrancy via Vault

(Design | High (B Code Corrected)

The Balancer V2 Vault has a known vulnerability to read-only-reentrancy:

CS-SLSGP-012

https://forum.balancer.fi/t/reentrancy-vulnerability-scope-expanded/4345.

The balances during onJoin/onExit are updated after new shares are minted/burned. And before balance
update, the Vault performs a call to external address with the remaining ETH.

The following scenario is possible:
« A large LP awaits the time when the updat ePer f or rance() can be called.

« LP exits in a balanced way(no updatePerformance triggered yet) and triggers the reentrancy from
the Vault.

« In the reentrant call the pool.updatePerformance() is executed. The reentrancy guard on Pool won't
be triggered, because it is the Vault that makes the reentrant call.

«The performance snapshots wrong values. PT will be already burned, but
Vaul t . get Pool Tokens() will return not yet updated balances. Thus the performance will be too
high.

This reentrancy is due to the way Vault contract deals with the ETH that is sent along with swap/join/exit
call using _handl eRermawi ni ngEt h function.

As a result, wrong performances will be saved for a given performance update period. This will cause
DoS in case of exit (performances are too high), or disable the performance based checks for the whole
period.

This applies to get Pool Per f or mance function as well.

@ Swaap Labs - SafeguardPool - ChainSecurity - © Decentralized Security AG 13

https://forum.balancer.fi/t/reentrancy-vulnerability-scope-expanded/4345
https://chainsecurity.com

Code corrected:

The reentrancy issue has been fixed in the Vault contract, where the update of the balances is now done
before the token transfers.

6.2 Incorrect Rounding Directions

(Security WD IEZZTRY] Code Corvected)

Most computations in SafeguardPool are based on 18 decimals for higher precision. However, rounding
errors are not properly handled in some cases, where it may round towards the advantage of users
instead of the pool.

CS-SLSGP-002

In cal cJoi nSwapAmount s(), the swapAnount | n is computed using di vDown. Then the r Opt is
computed from this value:

ui nt 256 swapAnount | n num di vDown(denom
ui nt 256 swapAnount Qut swapAnount | n. di vDown(guot eAnount | nPer Qut) ;

function cal cJoi nSwapROpt (ui nt 256 excessTokenBal ance, ui nt 256 excessTokenAnount|n
ui nt 256 swapAmountlin) internal pure returns (uint256) ({
ui nt 256 num excessTokenAnount | n. sub(swapAnount | n) ;
ui nt 256 denom = excessTokenBal ance. add(swapAnount | n) ;
return num di vDown(denom

}

However, the numwill be computed as excessTokenAnmount | n. sub(swapAnmount | n), thus it will be
effectively rounded up. This might result in minting more shares than intended.

A similar case exits in cal cExi t SwapAnmount s() though it is unclear which r Opt is larger.

In addition, in _exi t BPTI nFor Exact TokensCQut () the bpt Anbunt Qut is rounded down. This lowers
the amount of shares the user needs to burn. As a result, the pool tokens can lose value with time due to
exit conditions that do not favor remaining pool token holders.

ui nt 256 bpt Amount Cut t ot al Suppl y(). mul Down(r Opt) ;

In another note, _get OnChai nAnount | nPer Qut () and cal cBal anceDevi ati on round down the
computations. This may make the f ai r Pri ci ngSaf eguar d and balance based checks slightly weaker.
However, in other places, it is unclear if the computation should round up or down (e.g. computation of
currentPerformance in _updat ePer f or mance()).

Code corrected:

The cal cJoi nSwapROpt () now subs 1 wei from numerator and adds 1 wei to denominator. This
effectively lowers the number of tokens minted during the deposit by a small amount, that always
guarantees that the balances per PT values won't decrease during balanced join.

The cal cExi t SwapROpt () now adds 1 wei to numerator and subs 1 wei from denominator. This
effectively increases the number of tokens burned during the withdrawal by a small amount, that always
guarantees that the balances per PT values won't decrease during balanced exit.

The _exi t BPTI nFor Exact TokensQut () has been fixed to use mulUp instead of mulDown to
compute the amount of pool tokens burned upon a withdrawal.

@ Swaap Labs - SafeguardPool - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

The rounding in cal cBal anceDevi ati on can effectively be accounted by the quote generating
front-end.

6.3 Incorrect Target Deviation Computation

[Medium] [Version 1] Code Corrected

The balance safeguard validates that the HODL balance of the output token after a swap does not
deviate too much from it before the swap (target deviation). This is computed in the wrong way in
_get Perf AndTar get Dev(), where the numerator should be newBal anceCut Per PT instead of
newBal anceCQut . The target deviation should be in %, however, this wrongly computed value represents
the amount of pool tokens.

CS-SLSGP-003

Code corrected:

The target deviation now is correctly computed as
newBal ancePer PTQut . di vDown(hodl Bal ancePer PTCut) .

6.4 Missing Sanity Checks at Pool Initialization

() (Vi) (Version 1) (CXEIREEED

There is no sanity check on the user's input token amounts anount sl n as well as the initial HODL
balance at the pool initialization.

CS-SLSGP-004

In case a user initializes the pool with 0 anount sl n, the pool becomes useless irreversibly:
* Anyone can mint any amount of pool tokens by depositing O liquidity.
* No swap is possible as there is no liquidity.

A user can also disable swaps by initializing the pool with a small anount sl n, where the HODL balance
rounds down to 0. Assuming there is a pool of two tokens with 18 decimals, due to the following behavior
ofthe onlnitializePool:

e User initializes with amountsln = [1 wei, 1 wei].
* After scaleUp, amobuntsin = [1 wei, 1 wei] because the tokens already have 18 decimals.
« the HODL balance is computedas 1 * 10718 / (100 * 10718), which rounds down to O.

If both hold balances are 0, the _updat ePer f or mace and _get Per f AndTar get Dev will revert due to
the division by 0.

Code corrected:

A check was added in the _onl ni ti al i zePool () function, that requires both anount sl n[0] and
anount sl n[1] to be at least _M N_I NI TI AL_BALANCE = 1e8. This way, issues due to division by
zero will be avoided.

@ Swaap Labs - SafeguardPool - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

6.5 Balance Based Penalty Can Be Manipulated
D) (Low) (Version 1) (XL

In case the current pool balance is less than the pool balance at the quote time, a penalty will be
enforced on the quote price during a swap. However, the balance of the pool can be easily manipulated
by Join or Exit.

CS-SLSGP-001

In case there is a balance based penalty, a user can bypass it by Just In Time (JIT) liquidity provision:
« Join the pool to push the balance back to quote time.
» Swap without balance based penalty.

« Exit after the swap.

By having a valid quote and doing join-swap-exit bundle, users can bring the state of the pool balances in
a state, where other "pending" quotes are blocked by the balance based penalty. Thus, using
join-swap-exit bundle user can:

» Bypass paying the balance based penalty fees

* Avoid the naxDevi at i on check.

However, in join-swap-exit the user will only get fraction of the maxSwapAnount total swap value, due to
the need to provide out token as an asset during join.

A swap can also be front-run by a liquidity provider's exit, which aggravates the balance based penalty.
This way an exit-swap-join, (swap is sandwiched by malicious LP) can:

* Revert the swap

» Enforce the higher balance penalties on the swap.

This can be seen as a DoS attack, however it requires significant gas with no clear benefit for the
attacker.

Code corrected:
Swaap Labs responded:

The new balance based penalty also takes into consideration the balance change per PT as well as
the balance change: penalty = max(balanceChange, balanceChangePerPT) * slippage

Since joins and exits do not change the balances per PT, this check will not be bypassable by
join-swap-exit bundle. Thus, swaps with guoted balances that differ too much from the onchain conditions
will not be executable.

6.6 Price Feed Data Validity Checks
(Security [(ETYIVZETIBY] Code Corrected

SafeguardPool uses chainlink oracle to retrieve the price feed for tokens. However the checks in
ChainlinkUtils. getLatestPrice are missing or not strong enough:

e« ORACLE TI MEQUT is a constant of 1.5 days which could be too large. The heartbeat of most
datafeeds is much smaller:
htt ps://docs. chain. |ink/data-feeds/price-feeds/addresses#Et her eun?20Mai nnet .
Any round that is older than the Heartbeat cannot be considered fresh. This might happen due to
potential ChainLink failures.

CS-SLSGP-005

@ Swaap Labs - SafeguardPool - ChainSecurity - © Decentralized Security AG 16

https://chainsecurity.com

e ChainLink get Lat est Round returns roundl d and answer edl nRound. However, they are not
inspected. In ChainLink OCR pricefeeds the r oundl d and answer edl nRound are always equal.
However, older versions of pricefeeds require validation, that the round data was not computed in an
old round(answeredIinRound should not be less than roundld):
https://docs.chain.link/data-feeds/historical-data#getrounddata-return-values. Please be aware of
this and check for each deployed pool what pricefeed version is used.

Code corrected:
Swaap Labs responded:

Each oracle in a pool has its own maximum timeout (=< 1.5 days) which is immutable and defined at
deployment time. The roundld and answeredIinRound are checked .

6.7 Events Indexed Params

[Informational] [Version 1]

The quot el ndex in | Si gnat ur eSaf eguar d is not indexed. It functions as a random-order nonce for
guote signatures. Querying on-chain information about which quote is exhausted is easier if this field is
indexed.

CS-SLSGP-013

event SwapSi gnat ureVal i dat ed(byt es32 di gest, uint256 quot el ndex);
event All ow istJoinSignatureValidated(bytes32 digest);

Similarly, di gest params in both events can be indexed.

Code corrected:

quot el ndex as well as di gest of both events has been marked as indexed in the updated code.

6.8 Outdated Dependency of Balancer Pool
Factory

(Informational) (Version 1)

One of SafeguardPool's dependency Balancer's BasePool Fact ory has been updated in March where
create2() is used instead of create(). The full merge request can be found here:
https://github.com/balancer/balancer-v2-monorepo/pull/2362

CS-SLSGP-011

Code corrected:

Balancer dependency is updated. CREATE2 opcode with an extra sal t parameter is now used to deploy
the pools.

@ Swaap Labs - SafeguardPool - ChainSecurity - © Decentralized Security AG 17

https://docs.chain.link/data-feeds/historical-data#getrounddata-return-values
https://github.com/balancer/balancer-v2-monorepo/pull/2362
https://chainsecurity.com

6.9 Performance Safeguard Sensitivity

(Informational] [Version 1]

The HODL balances are set on initializing pool, and during the updates they are multiplied by
performance. This effectively fixes during the initialization the proportion of assets that are used for
performance safeguard. If the price of assets changes significantly over time, the difference between
balanceO/balancel and hodlBalanceO/hodIBalancel can cause significant sensitivity to price changes. In
addition, this imbalance can be caused intentionally during the initialization.

CS-SLSGP-007

For example:

1. Pool initialized with 1 Eth and 100k USD as assets. The hodIBalanceETH = 1, hodIBalanceUSD =
100k. Assume that BPT is always 1. At this time 1 ETH == 1000 USD. TLV = 101000 USD ==
holdTVL

2. Over time, with help of swap the balance of pool becomes: 50 ETH and 1000 USD, with 2000 USD
as ETH price. TLV = 101000 USD. old hodITVL = 1100 Since TVL does not change, the
holdBalanes will not change as well.

3. Without any balance changes, if price of ETH becomes 1900 USD == 5% drop: TLV = 96k USD.
hodITVL = 101900. newTVL/hodITVL = 0.942 > 5% drop

Thus, due to the initial proportion of hold balances the hodl performance of the pool was affected more
than the asset price. Also, note that the balances of tokens itself did not change between 2 and 3. Just
the change of the oracle price can be enough to make swaps fail due to the performance safeguard.

Code corrected:

Swaap Labs have updated the code that the performance safeguard will be bypassed if a swap is
rebalancing the current pool towards the hodl balance ratio.

i £ (newBal ancePer PTQut hodl Bal ancePer PTQut newBal ancePer PTI n hodl Bal ancePer PTI n)
{

_srequire(
_get Per f FromBal ancesPer PT(newBal ancePer PTI n, newBal ancePer PTQut ,
hodl Bal ancePer PTI n, hodl Bal ancePer PTQut , onChai nAnount | nPer Qut
) _get MaxPer f Dev(packedPool Par ans) ,
SwaapV2Err or s. LOWN PERFORVANCE

}

Swaap Labs stated:

The idea is to allow the rebalancing of assets even if we do not have good performance in order not
to find the pool stuck with undesired asset ratios.

@ Swaap Labs - SafeguardPool - ChainSecurity - © Decentralized Security AG 18

https://chainsecurity.com

7 Informational

We utilize this section to point out informational findings that are less severe than issues. These
informational issues allow us to point out more theoretical findings. Their explanation hopefully improves
the overall understanding of the project's security. Furthermore, we point out findings which are unrelated
to security.

7.1 Imbalanced Join Order
(Informational] [Version 1](]

CS-SLSGP-006

User can call _j oi nExact Tokensl| nFor BPTCut () to join the pool in an imbalanced way. There are
two approaches to achieve the same imbalanced join:

1. excess tokens are swapped for limited tokens first, then a balanced join is executed.

2. a balanced join is executed first, then do a swap to achieve the same result.

SafeguardPool takes the first approach. However, as the pool balance at swap time is smaller in
approach 1 compared to approach 2, it could induce higher balance based penalty and consequently
prevent a transition that actually benefits the system.

Acknowledged:
Swaap Labs responded:

We chose to keep this approach as it is easier to produce a quote for this kind of operation & it's
more gas efficient and easier to check the post trade safeguards. In addition a user can separately
swap and then join the pool even if we change the approach.

7.2 Invalidation of Quotes
(Informational) (Version 1)

CS-SLSGP-009

The signed quotes remain valid until they are either executed or reach their deadline. No functionality
allows a specific quote to be invalidated. However, changing the signer will invalidate all previously
signed quotes. In case the signer role holder is changed from Alice to Bob and then back to Alice, all the
un-expired quotes Alice signed before will become valid again. These facts must be considered
throughout the contract's lifespan.

7.3 Management Fees and Swap Safeguards

Relation
(Informational) (Version 1)

CS-SLSGP-010

The _cl ai mvanagenent Fees is called before any swap or join, but not during the swaps. This can
affect the safeguard that rely on per PT values. E.g. if _cl ai mvanagenent Fees is called after a long
period, the hodl balances per pt will drop, due to newly minted PT shares. Then, the safeguards can fail

@ Swaap Labs - SafeguardPool - ChainSecurity - © Decentralized Security AG 19

https://chainsecurity.com

until next snapshot of the hodl balances. Due to the low rate of management yearly fees (5%), this should
not be a problem.

@ Swaap Labs - SafeguardPool - ChainSecurity - © Decentralized Security AG 20

https://chainsecurity.com

8 Notes

We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

8.1 Consistency of Input Arguments Scale

(D) (Version 1)

Most of the computations work with values of 18 decimals. Input amounts for tokens that have less than
18 decimals will be first scaled up by a scaling factor to reach 18 decimals. In SafeguardPool, some of
the input argument amounts are expected to be already scaled up, while the others (mostly coming from
Vaul t) are not.

Examples of such differences:
*In_onlnitializePool (), anmountslninuser Dat a needs to be not upscaled.

«In _j oi nExact Tokensl| nFor BPTQut (), j oi nAnpunt s in user Dat a needs to be already scaled
up.

* In _exi t BPTI nFor Exact TokensQut (), exi t Anount s in user Dat a needs to be already scaled
up.

*In onSwap(), SwapRequest. anmpunt needs to be not upscaled, however
guot e. maxSwapAnount needs to be upscaled.

Scaling the value off-chain is gas-efficient, but requires the correct input data generation. If directly
submitting a transaction to the contract, users should be aware of which parameters should be scaled up
and which should not.

@ Swaap Labs - SafeguardPool - ChainSecurity - © Decentralized Security AG 21

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 Assumptions
	2.3 System Overview
	2.3.1 SafeguardPool
	2.3.1.1 Swap
	2.3.1.2 Init, Join and Exit
	2.3.1.3 Parameter setters
	2.3.1.4 Permissionless management functions

	2.3.2 SafeguardPoolFactory
	2.3.3 Trust Model

	3 Limitations and use of report
	4 Terminology
	5 Findings
	5.1 Performance Updates Can Be Sandwiched

	6 Resolved Findings
	6.1 Reentrancy via Vault
	6.2 Incorrect Rounding Directions
	6.3 Incorrect Target Deviation Computation
	6.4 Missing Sanity Checks at Pool Initialization
	6.5 Balance Based Penalty Can Be Manipulated
	6.6 Price Feed Data Validity Checks
	6.7 Events Indexed Params
	6.8 Outdated Dependency of Balancer Pool Factory
	6.9 Performance Safeguard Sensitivity

	7 Informational
	7.1 Imbalanced Join Order
	7.2 Invalidation of Quotes
	7.3 Management Fees and Swap Safeguards Relation

	8 Notes
	8.1 Consistency of Input Arguments Scale

