

PUBLIC

Code Assessment

of the Spool V2

Smart Contracts

October 20, 2023

Produced for

by

Contents

1 Executive Summary 3

2 Assessment Overview 5

3 Limitations and use of report 18

4 Terminology 19

5 Findings 20

6 Resolved Findings 21

7 Informational 43

8 Notes 44

Spool - Spool V2 - ChainSecurity - © Decentralized Security AG 2

https://chainsecurity.com

1 Executive Summary
Dear all,

Thank you for trusting us to help Spool with this security audit. Our executive summary provides an
overview of subjects covered in our audit of the latest reviewed contracts of Spool V2 according to Scope
to support you in forming an opinion on their security risks.

Spool implements a system for meta-strategies where users invest in vaults that then collectively invest
in strategies that interact with third-party DeFi systems.

The most critical subjects covered in our audit are functional correctness, access control,
denial-of-service, precision of arithmetic operations, and reentrancy. Security regarding all the
aforementioned subjects is good.

The general subjects covered are gas-efficiency, documentation, and error handling.

In summary, we find that the codebase provides a good level of security.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but do not replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

Spool - Spool V2 - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings
Below we provide a brief numerical overview of the findings and how they have been addressed.

Critical -Severity Findings 1

• Code Corrected 1

High -Severity Findings 7

• Code Corrected 7

Medium -Severity Findings 5

• Code Corrected 5

Low -Severity Findings 20

• Code Corrected 18

• Specification Changed 1

• Acknowledged 1

Spool - Spool V2 - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

2 Assessment Overview
In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope
The assessment was performed on the source code files inside the Spool V2 repository based on the
documentation files. The table below indicates the code versions relevant to this report and when they
were received.

Private Repository

V
Date Commit Hash Note

1 24 April 2023 a42763a240ce924ead97ad7c1aab09655703bf33 Initial Version

2 24 May 2023 b63e530b83262016ecf4f0c77bedcd51e1e9e7bf Second Version

3 28 June 2023 e2e65993b4209cac6a31a35fdf49b7c1b075bd36 Third Version

4 5 July 2023 c378d53b2b6641f166646d1fb330a448098899a7 Fourth Version

5 7 July 2023 09a7dcb3f946fa5ec8dcfd5fa462e2d37ff05b5c Fifth Version

Public Repository

V
Date Commit Hash Note

1 18 October 2023 09a7dcb3f946fa5ec8dcfd5fa462e2d37ff05b5c Fifth Version

For the solidity smart contracts, the compiler version 0.8.17 was chosen.

The files in scope are:

src/SmartVault.sol
src/MasterWallet.sol
src/guards/AllowlistGuard.sol
src/managers/ActionManager.sol
src/managers/RiskManager.sol
src/managers/DepositManager.sol
src/managers/StrategyRegistry.sol
src/managers/WithdrawalManager.sol
src/managers/GuardManager.sol
src/managers/AssetGroupRegistry.sol
src/managers/SmartVaultManager.sol
src/managers/UsdPriceFeedManager.sol
src/providers/ExponentialAllocationProvider.sol
src/providers/LinearAllocationProvider.sol
src/providers/UniformAllocationProvider.sol
src/libraries/ReallocationLib.sol
src/libraries/uint16a16Lib.sol
src/libraries/ArrayMapping.sol
src/libraries/uint128a2Lib.sol
src/libraries/SpoolUtils.sol

Spool - Spool V2 - ChainSecurity - © Decentralized Security AG 5

https://github.com/solidant/spool-v2-core/tree/a42763a240ce924ead97ad7c1aab09655703bf33
https://github.com/solidant/spool-v2-core/tree/b63e530b83262016ecf4f0c77bedcd51e1e9e7bf
https://github.com/solidant/spool-v2-core/tree/e2e65993b4209cac6a31a35fdf49b7c1b075bd36
https://github.com/solidant/spool-v2-core/tree/c378d53b2b6641f166646d1fb330a448098899a7
https://github.com/solidant/spool-v2-core/tree/09a7dcb3f946fa5ec8dcfd5fa462e2d37ff05b5c
https://github.com/SpoolFi/spool-v2-core/tree/09a7dcb3f946fa5ec8dcfd5fa462e2d37ff05b5c
https://chainsecurity.com

src/libraries/MathUtils.sol
src/interfaces/ISmartVaultManager.sol
src/interfaces/IMasterWallet.sol
src/interfaces/IRiskManager.sol
src/interfaces/IWithdrawalManager.sol
src/interfaces/IGuardManager.sol
src/interfaces/Constants.sol
src/interfaces/IDepositSwap.sol
src/interfaces/CommonErrors.sol
src/interfaces/IRewardManager.sol
src/interfaces/IStrategy.sol
src/interfaces/IDepositManager.sol
src/interfaces/ISmartVault.sol
src/interfaces/IAllocationProvider.sol
src/interfaces/IUsdPriceFeedManager.sol
src/interfaces/ISwapper.sol
src/interfaces/RequestType.sol
src/interfaces/IAction.sol
src/interfaces/IRewardPool.sol
src/interfaces/ISpoolAccessControl.sol
src/interfaces/IStrategyRegistry.sol
src/interfaces/IAssetGroupRegistry.sol
src/rewards/RewardPool.sol
src/rewards/RewardManager.sol
src/DepositSwap.sol
src/Swapper.sol
src/SmartVaultFactory.sol
src/external/interfaces/chainlink/AggregatorV3Interface.sol
src/external/interfaces/weth/IWETH9.sol
src/access/Roles.sol
src/access/SpoolAccessControl.sol
src/access/SpoolAccessControllable.sol
src/strategies/convex/Convex3poolStrategy.sol
src/strategies/convex/ConvexAlusdStrategy.sol
src/strategies/convex/ConvexStrategy.sol
src/strategies/curve/Curve3CoinPoolBase.sol
src/strategies/curve/Curve3poolStrategy.sol
src/strategies/curve/CurveAdapter.sol
src/strategies/curve/CurvePoolBase.sol
src/strategies/helper/StrategyManualYieldVerifier.sol
src/strategies/__BaseStrategy__.sol
src/strategies/AaveV2Strategy.sol
src/strategies/CompoundV2Strategy.sol
src/strategies/GhostStrategy.sol
src/strategies/IdleStrategy.sol
src/strategies/MorphoAaveV2Strategy.sol
src/strategies/MorphoCompoundV2Strategy.sol
src/strategies/MorphoStrategyBase.sol
src/strategies/NotionalFinanceStrategy.sol
src/strategies/REthHoldingStrategy.sol
src/strategies/SfrxEthHoldingStrategy.sol
src/strategies/StEthHoldingStrategy.sol
src/strategies/Strategy.sol
src/strategies/WethHelper.sol
src/strategies/YearnV2Strategy.sol

Spool - Spool V2 - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

Version 3In , the following files were added to the scope:

src/libraries/PackedRange.sol

2.1.1 Excluded from scope
All other files. External protocols are assumed to be working correctly; hence, out-of-scope. Rebasing
and Fee-taking tokens are assumed not to be used in the system. Note that the scope is limited to the
presented code and does not include the integration of future, yet unknown, integrations and extensions.

2.2 System Overview
Version 1This system overview describes the initially received version () of the contracts as defined in the

Assessment Overview.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

Spool implements Spool V2, a collection of smart contracts where users can deploy meta-strategies,
called Smart Vaults (SVs), that then invest into strategies interacting with DeFi protocols. Users invest in
SVs and receive Smart Vault Tokens (SVTs) in return while SVs then invest the user funds into
strategies, receiving Strategy Share Tokens (SSTs) in return, that deposit into third-party protocols. To
reduce gas costs, the number of interactions with external protocols is reduced by aggregating the SVs'
funds and investing them all together with "Do Hard Work" (DHW) actions. Ultimately, an asynchronous
process of depositing and withdrawing is implemented.

2.2.1 Smart Vaults
SVs are the layer at which users' investments are kept track of while being investors in strategies who
themselves invest in third-party protocols. Given a specification, the SVs are deployed through the
SmartVaultFactory that sets the required state for the SV according to the specification. Note that
this should define the execution model of the SV and consists of several parameters.

1. Strategy-specific parameters

1. Asset Group ID: must be a valid asset group ID.

2. Strategies: all must be strategies of the same asset group ID and whitelisted. Limited to 16
strategies. Requires at least one strategy. Strategies must be unique.

2. Allocation-specific parameters:

1. Fixed strategy allocation: fixed asset allocation among the strategies. If zero, this is irrelevant,
since the parameters in 2. are used for computing allocations dynamically. If non-zero, the
parameters in 2. are irrelevant.

2. Risk tolerance: the parameter for weighting the contribution of APYs and risk scores. The
higher the risk tolerance, the higher the APY should be weighted against risk scores when
computing allocations.

3. Risk provider: address providing risk scores for strategies in the risk manager.

4. Allocation provider: provides the allocation of funds amongst different strategies of the SV.

3. Action Hook parameters (note that there is a maximum of 10 actions per request type)

1. Actions: list of whitelisted action contracts.

Spool - Spool V2 - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

2. Action Request Types: a list, including what type of actions these are (in which context they
are called).

4. Guard Hooks parameters (note that there is a maximum of 10 actions per request type for each SV)

1. Guards: a set of guard definitions per request type. A guard definition is defined by a guard
contract, (string) method signature, an expected result value, the parameter types the guard
is expecting, the parameters to be passed to the guard, and the operator to compare the
expected value with the guard result. If no valid operator is used, the guard manager simply
treats the return value as a boolean.

2. Guard Request Types: list of what type of guards these are (in which context they are called).

5. Fee parameters

1. Management fee percentage: at most 5%

2. Deposit fee percentage: at most 5%

3. Performance fee percentage: at most 20%

6. Other

1. Name

2. Flag defining whether the vault admin can redeem for users.

3. The initial owner is set to the deployer.

Keep in mind that several parameters require a governance setup to be valid. See the corresponding
sections. (Asset Group Registry, Risk Manager, Allocation Provider, Guards, and Actions)

Once an SV is deployed, the central entry point for SV-related actions is the SmartVaultManager
(SVM) contract. It handles users' actions such as user deposits, redemptions, and SVT claims.
Furthermore, it manages the communication with the StrategyRegistry which is the entry-point for
DHW and, thus, the entry-point for SVs to indirectly interact with strategies.

The SVM orchestrates the strategies asynchronously. Namely, in so-called flush cycles, deposits and
withdrawals are aggregated per smart vault. At the end of such a cycle (when the smart vault is flushed),
the SVM will await the next DHW cycle, which should occur in the future. Hence, funds are awaited to be
freed and to be deposited. Once, the DHW cycles of all underlying strategies end, the SVM can
synchronize the result and, hence, finalize the deposits and withdrawals. Ultimately, SVM notifies
strategies when flushing, while retrieving the results upon synchronizing.

More specifically, with SmartVaultManager.deposit() and SmartVaultManager.redeem() (or
SmartVaultManager.redeemFor()) users register their actions to be applied in the next DHW cycle.
The users receive deposit and withdrawal receipts in the form of an ERC-1155 (SV implements
EIP-1155) as so-called D-NFTs and W-NFTs which will grant them the right to claim SVTs or the
underlying funds, respectively, according to their deposited amounts and redeemed shares. Note that the
deposit amount should be distributed with a valid ratio according to the allocations of the underlying
strategies and the asset ratios in the strategies at the last executed DHW.

Once the previous flush cycle has been synchronized, an SV can be flushed again through
SmartVaultManager.flushSmartVault() (or also optionally possible in deposits or withdrawals).

Smart Vault Manager notifies the strategies about aggregated deposits and withdrawals in an SV. These
aggregated deposits and withdrawals are accumulated for the next DHW cycle. More specifically, this
aggregation occurs in the StrategyRegistry contract. Note that a new flush cycle can start after the
finished one has gotten synchronized. Meaning that new deposits and withdrawals can be made while
the SV awaits the result of the strategies; however, no new flush can be performed until the SV's
previous flush has not been finalized (synchronized). For deposits, a distribution of the underlying funds
is computed according to the SV's strategy allocation and the asset ratios at the last DHW. Namely, using
these it computes the asset allocations across strategies and the ideal deposits across assets. The ratio
between these two essentially defines what share of a token deposit should go to a strategy.

Spool - Spool V2 - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

Once all DHWs for the strategies of an SV have been performed, the previous ("toSync") flush cycle can
be synchronized through (SmartVaultManager.syncSmartVault() (or mandatorily through any
other action at its beginning). The awaited results of the strategies are processed. Meaning, the
underlying assets of strategies and shares of SSTs are claimed according to the state at DHW and the
SV's deposits and withdrawals. Additionally, SVTs are preminted for all users according to the state when
the flush occurred (and DHW-dependent state necessary for SV fees).

Once the deposit/withdrawal epoch is synchronized, users can redeem their D-NFTS and W-NFTs for
SVTs and underlying tokens, respectively, with the corresponding functions
SmartVaultManager.claimSmartVaultTokens() and
SmartVaultManager.claimWithdrawal().

To summarize, the process can be described in five steps:

1. Aggregate deposits and withdrawals on the SV level. Users receive D-NFTs and W-NFTs.

2. Register SV for the next DHW by flushing. Aggregates SV deposits and withdrawals per strategy.

3. SV awaits the results of its strategies' DHWs.

4. The SV can be synchronized. Based on the results of the DHW, an SV's shares of SSTs and
underlying are claimed while SVTs are preminted for all users (unpacking aggregation at 2.).

5. Based on the results of 4., the aggregated user actions of 1. can be unpacked per user by
redeeming the receipt tokens in return for SVTs or underlying tokens.

Note that the SmartVaultManager manages the flush cycles and hence the synchronization. It,
however, commands the DepositManager and the WithdrawalManager contracts to manage the
deposits and withdrawals. First, they store the SV's aggregated actions. Second, they communicate the
deposits and withdrawals to the StrategyRegistry (which consequently aggregates for the strategies,
see Strategies). Third, they process the deposit and withdrawal results. Last, they command the
SmartVault contract to mint/burn its ERC-20/ERC-1155.

Note that there exists a non-asynchronous redeem function, SmartVaultManager.redeemFast().
Through the WithdrawalManager, it computes the amounts of SSTs claimable by the burned SVTs.
These SSTs are then redeemed through the StrategyRegistry (which essentially batches calls to the
strategies). The withdrawn amounts are then received by the user. The user can decide to retrieve the
funds either redeem() or redeemFast(), depending on his personal preferences (e.g., gas cost,
potentially unavailable funds in the underlying protocols, etc.).

Note that ROLE_SPOOL_ADMIN removes strategies from vaults (and optionally makes them unsupported
by the system) by calling removeStrategyFromVaults(). It replaces the strategies in the SVs with a
"ghost strategy" that is typically ignored when performing actions.

Recall that SVs can have dynamic strategy allocations. Changing the allocations is performed through a
call to reallocate() by ROLE_REALLOCATOR. A rough description of the process:

1. Retrieves and sets new allocations from the risk manager according to the SV specification
(synchronizes the smart vault if possible).

2. Computes per SV the deposits and withdrawals made to strategies in USD. Computes the total
deposits in USD needed.

3. Computes per SV the shares to be redeemed for the withdrawals.

4. For each SV, it virtually distributes each withdrawal in USD to the strategies that need a deposit
(based on the share they have of the total deposits needed). These results are aggregated to a
matrix where (i,j) represents the total USD flow from S_i to S_j.

5. Matches between flows from S_i to S_j are computed. Essentially, S_i will return some shares
SST_j to S_j as a "flow" that is equal in USD value to what S_j will return in SST_i to S_i.

6. However, unmatched amounts will exist which result in unmatched SSTs. These are redeemed.
The resulting underlying funds are then distributed according to the unmatched USD amounts and

Spool - Spool V2 - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

deposited into the strategies. This can be understood as S_i transferring (by converting first)
SST_j shares to S_j.

7. Ultimately, each SV can claim SST_j shares from the withdrawals it made from S_i to deposit into
S_j for the shares matched and unmatched (5. and 6.) according to the ratio of the value it
deposited into S_j and the total value that has moved from S_i to S_j.

2.2.2 Strategies
The StrategyRegistry is notified by DepositManager and WithdrawalManager about how much
they want to deposit to and withdraw from each strategy (addDeposit() and addWithdrawal(),
respectively). With the aggregated deposits and withdrawals per strategy, the next DHW will deposit to
and redeem from strategies. That is done by the StrategyRegistry.doHardWork() which batches
the doHardWork() functions of each strategy. Note that, the strategies communicate the number of
SSTs minted, the number of assets withdrawn, the yield percentage since the last DHW, the strategy
value at post-DHW, and the total SSTs post-DHW. The registry then proceeds to finalize the DHW for
each strategy

1. by storing the asset ratios of the strategies (required for computing the distribution when flushing
SVs and for checking the deposit amounts to SVs),

2. by storing the asset exchange rates (required for claiming SSTs according to the deposits made
when synchronizing),

3. by storing the assets withdrawn (required for splitting the underlying assets among SVs when
synchronizing) and the unclaimed assets (assets not claimed yet - changes when SVs claim
underlying assets. Required for strategy removals),

4. by storing the minted and total SSTs, the strategies' values, and the DHW timestamp,

5. by updating the total yield percentage accumulated over time,

6. and by updating the weighted APY according to the new yield generated and the weighting formula.

Further, other functions are used internally (e.g., redeemFast(), claimWithdrawals(),
removeStrategy()). Besides these, the platform fees can be set with setEcosystemFee(),
setEcosystemFeeReceiver(), setTreasuryFee() and setTreasuryFeeReceiver() by
ROLE_SPOOL_ADMIN. Additionally, ROLE_SPOOL_ADMIN can set the emergency wallet with
setEmergencyWithdrawalWallet() while the ROLE_EMERGENCY_WITHDRAWAL_EXECUTOR can
initiate emergencyWithdraw() that batches emergencyWithdraw() calls to strategies (and
optionally revokes their strategy status). The ROLE_SPOOL_ADMIN can add new strategies with
registerStrategy(). Finally, the ROLE_STRATEGY_APY_SETTER can set a custom strategy APY
with setStrategyApy() (in contrast to the running average APY computation in DHW).

2.2.3 Strategy
The contract Strategy provides Spool V2 with an interface to the external protocols. As mentioned in
Strategies, it should implement the following functionalities:

1. doHardWork() to make the actual deposits to/withdrawals from the underlying protocol,

2. emergencyWithdraw() to be called when a strategy is defected,

3. An ERC-20 implementation to represent its SSTs. It should support releasing and claiming SSTs,

4. Functionality to burn SSTs of an SV and return its deposited assets,

5. Functionality to accumulate protocol rewards (if the underlying protocol distributes any),

6. Functionality to distribute SSTs.

Each underlying protocol has a specific API. Hence, for each protocol, a customised implementation of
Strategy is devised. In what follows, we describe the strategies of each protocol.

Spool - Spool V2 - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

2.2.3.1 Curve
The Curve3poolStrategy interacts with the Curve 3pool containing DAI, USDC and USDT. All three
tokens must be deposited in roughly the same ratio the pool's balances are currently in. Deposited assets
yield an LP token that is then deposited into the respective Gauge contract of the pool, which yields yet
another LP token. The Gauge emits CRV token rewards that are redeemed and immediately swapped to
the underlying tokens on each DHW run. These tokens are then deposited into the pool again.

2.2.3.2 Convex
The Convex3poolStrategy works similarly to the Curve3poolStrategy. The pool LP tokens are,
however, deposited into Convex' Booster contract instead of the Curve Gauge. The Booster contract
yields CVX tokens in addition to CRV tokens.

The ConvexAlusdStrategy also invests in the Curve 3pool. It then invests the LP tokens into the
Curve alUSD pool which consists of the 3pool LP token and the alUSD token, creating a pool with 4
tokens in total. The strategy only invests the LP token and 0 alUSD. It also only withdraws the LP token
and therefore consists of only the 3 original tokens. The alUSD pool LP token is then further invested into
Convex' Boooster contract.

2.2.3.3 Aave V2
The AaveV2Strategy can be deployed to multiple instances, each with a different underlying token.
The strategy has strictly only one underlying token per instance and can therefore only be used by
SmartVaults that belong to an asset group consisting of this token. The strategy invests in an Aave v2
market as a supplier and does not perform borrowing on the supplied collateral. It does not handle any
rewards.

2.2.3.4 Compound V2
The CompoundV2Strategy can be deployed to multiple instances, each with a different underlying
token. The strategy has strictly only one underlying token per instance and can therefore only be used by
SmartVaults that belong to an asset group consisting of this token. The strategy invests in a Compound
v2 market as a supplier and does not perform borrowing on the supplied collateral. It redeems COMP
rewards on every DHW run, converts them back to underlying and deposits them back into the protocol.

2.2.3.5 Idle
It implements an interface to Idle protocol, which facilitates users to optimise their asset allocations
across different protocols. This protocol is governed by users holding the governance tokens.

IdleStrategy supports only one underlying asset. Hence, it can be deployed multiple times with
different tokens. After receiving the underlying token, the strategy invests it in the Idle protocol. In return,
the users, for each deposited token, receive 1/$IDLE Price, as IDLE is a rebasing token and its value
increases monotonically. Users having deposited to Idle receive their rewards of governance tokens,
which can be traded against the underlying tokens and consequently be deposited into the protocol.

2.2.3.6 Morpho
Morpho is a P2P lending layer that uses another lending protocol for liquidity. Morpho contracts for two of
these underlying lending protocols are used in Spool V2:

The MorphoCompoundV2Strategy can be deployed to multiple instances, each with a different
underlying token. The strategy has strictly only one underlying token per instance and can therefore only
be used by SmartVaults that belong to an asset group consisting of this token. The strategy invests in a
Morpho Compound v2 market as a supplier and does not perform borrowing on the supplied collateral. It
redeems MORPHO rewards on every DHW run, converts them back to underlying and deposits them back
into the protocol.

Spool - Spool V2 - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

The MorphoAaveV2Strategy can be deployed to multiple instances, each with a different underlying
token. The strategy has strictly only one underlying token per instance and can therefore only be used by
SmartVaults that belong to an asset group consisting of this token. The strategy invests in a Morpho
Aave v2 market as a supplier and does not perform borrowing on the supplied collateral. It redeems
MORPHO rewards on every DHW run, converts them back to underlying and deposits them back into the
protocol.

2.2.3.7 Notional
Notional is a lending protocol for fixed-rate, fixed-term loans. While fixed-term lending might require
interaction from time to time, Notional also allows liquidity provisioning via so-called nTokens that
provide liquidity to all markets and roll-over loans automatically. Spool V2 invests in these nTokens.

The NotionalFinanceStrategy can be deployed to multiple instances, each with a different
underlying token. The strategy has strictly only one underlying token per instance and can therefore only
be used by SmartVaults that belong to an asset group consisting of this token. The strategy invests into a
nTokens for a certain market which is used to provide liquidity to multiple pools. The investments can
either be net-lending or net-borrowing depending on the current market. nToken investments yield Note
token rewards that are reinvested on every DHW run.

2.2.3.8 Rocket Pool
Rocket Pool gathers ETH from the staking users to spin up the ETH validators. Hence, users can only
deposit ETH to Rocket Pool and in return receive rETH. As Ethereum validators receive rewards, they
pay fees to the protocol. As a result, for a certain amount of deposited ETH, fees will be accumulated and
the price of rETH held by users against ETH increases. Spool V2, however, does not directly deposit to
Rocket Pool, but trades ETH with rETH through Uniswap and Balancer.

It is worth mentioning, that as all deposited ETH in Spool V2 are converted to WETH, when interacting
with Rocket Pool, they should again be wrapped and unwrapped.

2.2.3.9 Frax
Frax Ether is an ETH staking derivative to generate yields. Staked ETH in Frax comes in two forms,
either frxETH or sfrxETH. When a user deposits to Frax by calling
frxETHMinter.submitAndDeposit(), frxETH gets minted. Holding frxETH on its own is not eligible
for staking yield. Therefore, frxEthMinter locally exchanges frxETH against sfrxETH. sfrxETH
accrues the staking yield of Frax ETH validators. While sfrxETH is a rebasing token, the exchange rate
of frxETH per sfrxETH increases.

Spool V2 devises another option for obtaining sfrxETH, as well as depositing to frxEthMinter, which
is exchanging ETH on Curve to receive frxETH and deposit it to sfrxEthToken contract to receive the
respective amount of sfrxETH. When withdrawing, the only option is to redeem sfrxETH for frxETH
and exchange it on Curve to get ETH back.

2.2.3.10 Lido
Lido is a liquid staking pool. It acts as an ERC-20 token, which represents staked ETH, namely stETH.
Although stETH tokens are pegged by deposited ETH, they yield fees and the market exchange rate
between stETH and ETH increases with more ETH being deposited.

Spool V2 can receive stETH either by sending ETH to the submit function of Lido or exchanging its
ETH on Curve to obtain stETH. When redeeming, it sells stETH on Curve and receives ETH. Like Frax,
during redeeming the only possible way is to trade stETH against ETH on Curve.

Spool - Spool V2 - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

2.2.3.11 Yearn
Yearn interfaces a Yearn Token Vault, which holds one and only one underlying token. Yearn, similar to
Spool V2, can be connected to multiple strategies to maximize its yield. It has a monitoring mechanism,
named Yearn Watch, which monitors the health of underlying strategies and if necessary, reallocates
the deposited funds amongst them. Apart from this algorithm, to maximize the yield, Yearn has no reward
tokens.

When a user deposits to Yearn, it can theoretically revert if the total deposited value reaches a pre-set
limit. Minting yvToken is based on the free funds in the system (outstanding debts included). Upon
withdrawing, not enough tokens might be present in the Yearn Token Vault. In this case, Yearn has to
withdraw from the underlying strategies, which could potentially cause loss.

2.2.4 Guards
On SV deployment, the GuardManager contract receives a set of guards and request types through
setGuards() from the SV factory. This deploys a "storage contract" per request type that contains all
guard definitions.

Guards support different request types (TransferSVTs, TransferNFT, BurnNFT, Deposit, and
Withdrawal). The view function runGuards() runs guards of a certain type. Note that this requires
encoding calldata according to the guard definition.

Users should carefully set up these guards, given the creation of the calldata.

Note that the only guard present in the codebase is the AllowlistGuard where the smart vault-specific
role ROLE_GUARD_ALLOWLIST_MANAGER can add and remove users from a whitelist with
addToAllowlist() and removeFromAllowlist().

2.2.5 Actions
Upon the SV deployment, the ActionManager contract receives a set of actions and request types
through setAction() from the SV factory. These, however, need to be whitelisted. Only
ROLE_SPOOL_ADMIN can whitelist actions with whitelist().

The only request types that will be executed are Deposit and Withdrawal. The former will be
executed before the underlying assets are actually deposited into SV, while the latter will be executed
when withdrawals are claimed before the funds are sent. Note that this happens only through Spool V2
internal calls to runActions().

2.2.6 Asset Group Registry
The AssetGroupRegistry contract defines supported groups of assets (at least one item). To create
an asset group, ROLE_SPOOL_ADMIN can register a list of ordered assets through
registerAssetGroup(), which means that the asset group will not contain duplicate assets. Note that
each group can have only one ID. Further, the assets added to groups must be whitelisted which the
ROLE_SPOOL_ADMIN can do through allowToken() or allowTokenBatch().

2.2.7 Risk Manager
On SV deployment, the RiskManager contract stores the SV's risk provider, risk tolerance, and
allocation provider with setRiskProvider, setRiskTolerance(), and
setAllocationProvider(). The risk manager receives risk scores from ROLE_RISK_PROVIDER
(note these are risk provider based) through the call setRiskScores(). These risk scores are in the
range from 1 to 100.

Note that deployers can specify STATIC_RISK_PROVIDER as the risk provider which allows having a
static risk score of one for every strategy.

Spool - Spool V2 - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

The calculateAllocation() computes an SV's relative strategy allocation. It forwards the strategies,
their risk scores and APYs, and the SV's risk tolerance to the allocation provider that computes the
allocation. Note that it is validated that the allocation sums up to 100%.

2.2.8 Allocation Provider
The allocation provider devises calculateAllocation() for the instances of RiskManager. It
practically calculates the allocation of SV's funds to the strategies, and ultimately the underlying
protocols. In the current state of Spool V2 three different policies for allocation provider is implemented,
which we are going to cover next.

2.2.8.1 Uniform Allocation Provider
Oblivious to the risk tolerance and APYs of the underlying strategies, this allocation provider evenly
distributes funds to the strategies. Due to rounding errors, the calculated allocations probably do not sum
up to 100%, hence, it collects the dust by assigning the difference to the first strategy.

2.2.8.2 Linear Allocation Provider
Given a risk score, it first finds riskWeight and apyWeight. The higher the risk score, the higher
apyWeight and the lower riskWeight. It calculates the allocation to a given strategy as

normalizedApy = (uint256(data.apys[i]) * MULTIPLIER) / apySum;
uint256 normalizedRisk = (MULTIPLIER - (data.riskScores[i] * MULTIPLIER) / riskSum) / (data.apys.length - 1);
allocations[i] = normalizedApy * apyWeight + normalizedRisk * riskWeight;

It is worth mentioning, that if APY of a strategy is negative, normalizedApy is set to 0; hence, the
allocation would be computed solely concerning risk factors. Lower risk scores lead to higher
normalizedRisk, while higher apy lead to higher normalizedApy.

2.2.8.3 Exponential Allocation Provider
It calculates the allocation to each strategy according to the following formula:

allocations[i] = 2apy[i]riskTolerance

riskScore[i]

As seen through this formula, higher risk tolerances as well as higher strategy APY's increase the
allocation, while risk score scales down the allocation.

2.2.9 USD Price Feed Manager
Given the pool of potentially distinct assets in an asset group, the USD price feed manager helps unify
the value of the underlying tokens to USD as a denomination unit. The USD price feed manager is a
wrapper around Chainlink price feeds. ROLE_SPOOL_ADMIN can define the required parameters per
asset with setAsset() so that it works correctly with the Spool V2.

2.2.10 Master Wallet
The master wallet is the contract that holds underlying tokens. The funds deposited, waiting to be
invested into strategies, and the funds withdrawn from strategies, waiting to be claimed, are put into the
MasterWallet. It can only be used by ROLE_MASTER_WALLET_MANAGER (e.g., withdrawal manager
and strategy registry for transfers, governance for giving approvals).

2.2.11 Access Control
All access control is centrally managed in SpoolAccessControl.

Spool - Spool V2 - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

The default administrator role is equal to ROLE_SPOOL_ADMIN. Special role administrators are the
ADMIN_ROLE_STRATEGY and ADMIN_ROLE_SMART_VAULT_ALLOW_REDEEM that are the admins for
giving out ROLE_STRATEGY and ROLE_SMART_VAULT_ALLOW_REDEEM roles.

It expands on the OpenZeppelin access control library and expands it by implementing

1. grantSmartVaultRole(): either the governance or the vault admin can give out custom
vault-specific roles (see example in Guards). revokeSmartVaultRole() revokes the role from
an address. renounceSmartVaultRole() and renounceSmartVaultRole() to renounce
from a smart vault role.

2. grantSmartVaultOwnership(): used by factory to give ROLE_SMART_VAULT_ADMIN to the
deployer.

3. pause() and unpause(): to pause and unpause the system (e.g., pauses SV manager and
DHW).

2.2.12 Swapper
The Swapper contract acts as a wrapper around DEXs. The ROLE_SPOOL_ADMIN can (dis-)allow
exchange addresses for performing swaps with updateExchangeAllowlist(). The swap() function,
swaps the tokens-in against the tokens-out and sends the tokens-out to the receiver. To swap, the
tokens-in need to be transferred to the swapper, before the swap() function is called. It batches multiple
calls to whitelisted exchanges according to the swap information (arbitrary calls possible). Unused funds
are returned to the receiver.

Note that no slippage protection is included here and that it is expected that exchanges are implementing
slippage protection. In general, it is not guaranteed that the swap info does not swap to other tokens
rather than the tokens-out.

2.2.13 Deposit Swap
The DepositSwap contract is a peripheral contract that implements the function swapAndDeposit().
It pulls funds from the caller (supporting native ETH) and swaps them through the swapper according to
the swap information to the assets of the smart vault. When the swap is complete, the funds are
deposited into the smart vault, and the remaining (known of) assets are sent back to the caller.

2.2.14 Rewards
The reward contract offers the possibility to add extra incentives to smart vaults. Namely, the vault
administrator or the Spool admin can add a reward with addToken() for an SV. Given a number of
reward tokens, the reward token, and an end timestamp of the reward release schedule, a configuration
for an SV can be created. These tokens are expected to be made claimable by
ROLE_REWARD_POOL_ADMIN in cycles (according to the release rate defined) in an off-chain component
by computing a Merkle Tree and publishing its root with addTreeRoot() (option to update the root
updateTreeRoot() available). Users can claim rewards with claim(). Note that, it collects all the
rewards up to the cycle specified for a given SV and incentive token (implies that each user's total
rewards claimable must be monotonically increasing). Consider that an incentive period can be extended
for the same duration with extra tokens with extendRewardEmission(), and that only non-blacklisted
and non-underlying (per SV) tokens are supported as incentives. Once a reward has been fully released
(end time has passed), it can be removed to create space for new rewards since at most 6 incentive
programs per SV can be active.

Only ROLE_SPOOL_ADMIN can (un-)blacklist tokens for an SV with forceRemoveReward() and
removeFromBlacklist().

Spool - Spool V2 - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

2.2.15 Roles & Trust Model
Main contracts such as Smart Vault, Smart Vault Factory, Strategy Registry, and Asset Group Registry
are deployed behind a beacon proxy. The proxy admin (assumed to be appropriately chosen, e.g., a
timelocked or limited multisig) is fully trusted to act honestly and correctly at all times.

We assume a correct deployment and consequently a sound assignment of roles.

There are several roles present that refer to smart contracts of the system. These are expected to match
the right contracts and are trusted.

• ROLE_SMART_VAULT_INTEGRATOR: It deploys and adds SVs to the Spool. However, users can
choose whether to interact with an SV or not. It should be assigned to the SmartVaultFactory.

• ROLE_MASTER_WALLET_MANAGER: In a sane deployment, this role is granted to trusted core
contracts namely SmartVaultManager, StrategyRegistry, DepositManager, and WithdrawalManager.

• ROLE_SMART_VAULT_MANAGER: Granted to SmartVaultManager, DepositManager and
WithdrawalManager; hence, trusted.

• ROLE_STRATEGY_REGISTRY: StrategyRegistry holds this role and is assumed to be trusted.

• ROLE_ALLOCATION_PROVIDER: Each contract holding this role should be fully trusted, as it can be
queried as an allocation provider.

• ROLE_STRATEGY: To be valid, a strategy should have this role. It should be trusted, as it acts as an
interface for the underlying protocol.

• ADMIN_ROLE_STRATEGY: Taken as fully trusted. Expected to be the strategy registry.

• ADMIN_ROLE_SMART_VAULT_ALLOW_REDEEM: Fully trusted, as it can assign the aforementioned
role to users. Expected to be the SV factory.

Other roles are privileged roles on the system level that can execute some privileged actions:

• ROLE_SPOOL_ADMIN: Fully trusted as it has the highest privilege in the ecosystem (e.g., manipulate
the USD price feed, assign other roles).

• ROLE_EMERGENCY_WITHDRAWAL_EXECUTOR: Can withdraw funds in case of emergency to the
emergency wallet. Assumed to be fully trusted and to use its powers only in case of emergency.

• ROLE_STRATEGY_APY_SETTER: Trusted as APYs directly affect allocations. Expected to only
provide meaningful values if necessary.

• ROLE_PAUSER and ROLE_UNPAUSER: These roles can pause/unpause the system. Hence, they
should be trusted, otherwise, users' funds can be trapped in the system.

• ROLE_REALLOCATOR: An address holding this role is privileged as it can call reallocate() and
provide the reallocation parameters which should be set correctly. Fully trusted since bad
reallocation parameters could be provided.

• ROLE_DO_HARD_WORKER: Fully trusted, as it is capable of calling doHardWork(). Similar, to the
above.

• ROLE_RISK_PROVIDER: The smart contract having this role should be trusted and using untrusted
risk providers should be avoided, as it feeds in risk scores for each strategy which ultimately affects
the allocation of an SV.

• ROLE_REWARD_POOL_ADMIN: Fully trusted for the incentive mechanism.

Further, some roles are specific to a smart vault:

• ROLE_SMART_VAULT_ADMIN: Generally trusted. Can assign smart vault-specific roles (e.g., for the
allow list guard). Also, can redeem for users (to the users).

• ROLE_GUARD_ALLOWLIST_MANAGER: This role is in charge of maintaining allow lists for an SV;
hence, capable of bricking the vault. Therefore, it should be fully trusted if it is used.

Spool - Spool V2 - ChainSecurity - © Decentralized Security AG 16

https://chainsecurity.com

Last, some roles describe the properties of smart vaults:

• ROLE_SMART_VAULT_ALLOW_REDEEM: Fully trusted. A malicious user holding this role can redeem
the assets of other users and block them from receiving the planned yields.

External Users: Untrusted and could act maliciously.

We assume the users holding privileged roles, e.g., doHardWorker and reallocator, calculate the optimal
and correct slippages off-chain, before feeding them into the system. We further assume that the admin
does not add malicious tokens to the AssetGroupRegistry.

Spool - Spool V2 - ChainSecurity - © Decentralized Security AG 17

https://chainsecurity.com

3 Limitations and use of report
Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

Spool - Spool V2 - ChainSecurity - © Decentralized Security AG 18

https://chainsecurity.com

4 Terminology
For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

• Likelihood represents the likelihood of a finding to be triggered or exploited in practice

• Impact specifies the technical and business-related consequences of a finding

• Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment
procedure.

Likelihood Impact
High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

Spool - Spool V2 - ChainSecurity - © Decentralized Security AG 19

https://chainsecurity.com

5 Findings
In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

• Security : Related to vulnerabilities that could be exploited by malicious actors

• Design : Architectural shortcomings and design inefficiencies

• Correctness : Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 1

• AcknowledgedRead-only Reentrancy

5.1 Read-only Reentrancy
Design Low Version 1 Acknowledged

CS-SpoolV2-024

It can be possible to construct examples where certain properties of the SV mismatch reality. For
example, during reallocations, a temporary devaluation of SVTs occurs due to SSTs being released. Due
to reentrancy possibilities, certain values retrieved could be inaccurate (e.g. SV valuation).

Acknowledged:

While the read-only reentrancy does directly affect on the protocol, it could affect third parties. Spool
replied:

The mentioned view functions are not intended to be used while the
reallocation is in progress.

Spool - Spool V2 - ChainSecurity - © Decentralized Security AG 20

https://chainsecurity.com

6 Resolved Findings
Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 1

• Code CorrectedLack of Access Control in recoverPendingDeposits()

High -Severity Findings 7

• Code CorrectedDOS Synchronization by Dividing With Zero Redeemed Shares

• Code CorrectedDOS on Deposit Synchronization

• Code CorrectedDonation Attack on SST Minting

• Code CorrectedDonation Attack on SVT Minting

• Code CorrectedFlushing Into Ongoing DHW Leading to Loss of Funds

• Code CorrectedNo Deposit Due to Reentrancy Into redeemFast()

• Code CorrectedWrong Slippage Parameter in Curve Deposit

Medium -Severity Findings 5

• Code CorrectedCurve LP Token Value Calculation Can Be Manipulated

• Code CorrectedDeposits to Vault With Only Ghost Strategies Possible

• Code CorrectedGhost Strategy Disables Functionality

• Code CorrectedInconsistent Compound Strategy Value

• Code CorrectedStrategy Value Manipulation

Low -Severity Findings 19

• Code CorrectedDistribution to Ghost Strategy

• Code CorrectedLack of Access Control for Setting Extra Rewards

• Code CorrectedWrong Error IdleStrategy.beforeRedeemalCheck()

• Specification ChangedAccess Control Not Central to Access Control Contract

• Code CorrectedAsset Decimal in Price Feed

• Code CorrectedBad Event Emissions

• Code CorrectedBroken Conditions on Whether Deposits Have Occurred

• Code CorrectedDeposit Deviation Can Be Higher Than Expected

• Code CorrectedInconsistent Handling of Funds on Strategy Removal

• Code CorrectedMisleading Constant Name

• Code CorrectedMissing Access Control in Swapper

• Code CorrectedMissing Event Fields

• Code CorrectedNo Sanity Checks on Slippage Type

• Code CorrectedPrecision Loss in Notional Finance Strategy

• Code CorrectedRedemption Executor

Spool - Spool V2 - ChainSecurity - © Decentralized Security AG 21

https://chainsecurity.com

• Code CorrectedState Inconsistencies Possible

• Code CorrectedUnused Functions

• Code CorrectedUnused Variable

• Code CorrectedValidation of Specification

Informational Findings 9

• Code CorrectedReverts Due to Management Fee

• Code CorrectedSimplifying Performance Fees

• Code CorrectedStrategy Removal for an SV Possible That Does Not Use It

• Specification ChangedErrors in NatSpec

• Code CorrectedDistinct Array Lengths

• Code CorrectedGas Optimizations

• Code CorrectedNameless ERC20

• Code CorrectedNFT IDs

• Code CorrectedTokens Can Be Enabled Twice

6.1 Lack of Access Control in
recoverPendingDeposits()
Security Critical Version 3 Code Corrected

CS-SpoolV2-039

DepositManager.recoverPendingDeposits() has no access control (instead of being only
callable by the SV manager). Thus, it allows arbitrary users to freely specify the arguments passed to the
function. Ultimately, funds from the master wallet can be stolen.

Code corrected:

Access control was added. Now, only ROLE_SMART_VAULT_MANAGER can access the function.

6.2 DOS Synchronization by Dividing With Zero
Redeemed Shares
Security High Version 1 Code Corrected

CS-SpoolV2-001

_sharesRedeemed describes the SSTs redeemed by an SV. That value could be zero due to rounding.
Hence,

uint256 withdrawnAssets =
 _assetsWithdrawn[strategy][dhwIndex][j] * strategyShares[i] / _sharesRedeemed[strategy][dhwIndex];

could be a division by zero.

Consider the following scenario:

1. Many deposits are made to an SV.

Spool - Spool V2 - ChainSecurity - © Decentralized Security AG 22

https://chainsecurity.com

2. The attacker makes a 1 SVT wei withdrawal.

3. The attacker flushes the SV.

4. The redeemed SSTs are computes as
strategyWithdrawals[i] = strategyShares * withdrawals / totalVaultShares.
strategyShares corresponds to the shares held by the SV. Hence if the SV's balance of SSTs is
lower than the total supply of SSTs (recall, the withdrawal is 1), the shares to be withdrawn is 0.

5. The withdrawal manager passes it to the strategy registry which then stores these values in
_sharesRedeemed.

6. No other SV tries to withdraw.

7. The division reverts on synchronization.

Ultimately, funds will be locked and SVs could be DOSed.

Code corrected:

Now, in every iteration of the loop in StrategyRegistry.claimWithdrawals(), it is checked
whether the strategy shares to be withdrawn from the SV (strategyShares) are non-zero. In the case
of strategyShares being zero, the iteration is skipped. If not the case, _sharesRedeemed > 0 will
hold. That is because it is the sum of all SV withdrawals. In other words,
strategyShares_SV > 0 => _sharesRedeemed > 0.

6.3 DOS on Deposit Synchronization
Security High Version 1 Code Corrected

CS-SpoolV2-002

After the DHW of an SV's to-sync flush cycle, the SV must be synced. The deposit manager decides,
based on the value of the deposits at DHW, how many of the minted SSTs will be claimable by the SV. It
is computed as follows:

result.sstShares[i] = atDhw.sharesMinted * depositedUsd[0] / depositedUsd[1];

The depositedUsd has the total deposit of the vault in USD at index zero while at index 1 the total
deposits of all SVs are aggregated.

To calculate result.sstShares[i] the following condition should be met:

/// deposits = _vaultDeposits[parameters.smartVault][parameters.bag[0]][0];
deposits > 0 && atDhw.sharesMinted > 0

which means that the first asset in the asset group had to be deposited and that at least one SST had to
be minted. Given very small values and front-running DHWs with donations that could be achieved.
Ultimately, a division-by-zero could DOS the synchronization.

Consider the following scenario:

1. Only withdrawals occur on a given strategy.

2. An attacker sees a DHW incoming for that strategy.

3. The attacker frontruns the transaction and makes a minor deposit so that deposits > 0 holds.
Additionally, the assetToUsdCustomPriceBulk() should return 0 which is possible due to
rounding. See the following code in UsdPriceFeedManager.assetToUsdCustomPrice:

Spool - Spool V2 - ChainSecurity - © Decentralized Security AG 23

https://chainsecurity.com

assetAmount * price / assetMultiplier[asset];

Under the condition that assetAmount * price is less than assetMultiplier (e.g. 1 wei at 0.1
USD for a token with 18 decimals), that will return 0.

4. Additionally, the attacker donates an amount so that Strategy.doHardWork() so that 1 wei SST
will be minted (note that the Strategy mints based on the balances and does not receive the
amount that were deposited).

5. Finally, DHW is entered and succeeds with 1 minted share.

6. The vault must sync. However, it reverts due to depositedUsd[1] being calculated as 0.

Ultimately, an attacker could cheaply attack multiple SVs under certain conditions.

Code corrected:

deposits > 0 has been replaced by checking whether there are any deposits made to any of the
underlying assets. Additionally, a condition skips the computation (and some surrounding ones) in case
the deposited value is zero.

6.4 Donation Attack on SST Minting
Security High Version 1 Code Corrected

CS-SpoolV2-003

The SSTs are minted on DHW and based on the existing value. However, it is possible to donate (e.g.
aTokens to the Aave strategy) to strategies so that deposits are minting no shares.

A simple attack may cause a loss in funds. Consider the following scenario:

1. A new strategy is deployed.

2. 1M USD is present for the DHW (value was zero since it is a new strategy).

3. An attacker donates 1 USD in underlying of the strategy (e.g. aToken).

4. DHW on the strategies happens.``usdWorth[0]`` will be non-zero. Hence, the
depositShareEquivalent will be computed using multiplication with total supply which is 0.
Ultimately, no shares will be minted.

Ultimately, funds could be lost.

An attacker could improve on the attack for profit.

1. A new strategy is deployed.

2. An attacker achieves to mint some shares.

3. The attacker redeems the shares fast so that only 1 SST exists.

4. Now, others deposit 1M USD.

5. The attacker donates 1M + 1 USD in yield-bearing tokens to the strategy.

6. No shares are minted due to rounding issues since the depositSharesEquivalent and the
withdrawnShares are zero.

The deposits will increase the value of the strategy so that the attacker profits.

Ultimately, funds could be stolen.

Spool - Spool V2 - ChainSecurity - © Decentralized Security AG 24

https://chainsecurity.com

Code corrected:

While the total supply of SSTs is less than INITIAL_LOCKED_SHARES, the shares are minted at a fixed
rate. INITIAL_LOCKED_SHARES are minted to the address 0xdead so that a minimum amount of
shares is enforced. That makes such attacks much more expensive.

6.5 Donation Attack on SVT Minting
Security High Version 1 Code Corrected

CS-SpoolV2-004

The SVTs that are minted on synchronization are minted based on the existing value at the flush.
However, it is possible to donate to SVs so that deposits are minting no shares.

A simple attack may cause a loss in funds. Consider the following scenario:

1. A new SV is deployed.

2. 1M USD is flushed (value was zero since it is a new vault).

3. An attacker, holding some SSTs (potentially received through platform fees), donates 1 USD in
SSTs (increases the vault value to 1 USD). Frontruns DHW.

4. DHW on the strategies happens.

5. The SV gets synced. The synchronization does not enter the branch of
if (totalUsd[1] == 0) since the value is 1 USD. The SVTs are minted based on the total
supply of SVTs which is zero. Hence, zero shares will be minted.

6. The depositors of the fund receive no SVTs.

Ultimately, funds could be lost.

An attacker could improve on the attack for profit.

1. A new SV is deployed.

2. An attacker achieves to mint some shares.

3. The attacker redeems the shares fast so that only 1 SVT exists.

4. Now, others deposit 1M USD, and the deposits are flushed.

5. The attacker donates 1M + 1 USD in SSTs to the strategy.

6. Assume there are no fees for the SV for simplicity. Synchronization happens. The shares minted for
the deposits will be equal to 1 * 1M USD / (1M + 1 USD) which rounds down to zero.

The deposits will increase the value of the vault so that the attacker profits.

Finally, consider that an attack could technically also donate to the strategy before the DHW so that
totalStrategyValue is pumped.

Code corrected:

While the total supply of SSTs is less than INITIAL_LOCKED_SHARES, the shares are minted at a fixed
rate. INITIAL_LOCKED_SHARES are minted to the address 0xdead so that a minimum amount of
shares is enforced. That makes such attacks much more expensive.

Spool - Spool V2 - ChainSecurity - © Decentralized Security AG 25

https://chainsecurity.com

6.6 Flushing Into Ongoing DHW Leading to Loss
of Funds
Security High Version 1 Code Corrected

CS-SpoolV2-005

The DHW could be reentrant due to the underlying protocols allowing for reentrancy or the swaps being
reentrant. That reentrancy potential may allow an attacker to manipulate the perceived deposit value in
Strategy.doHardWork().

Consider the following scenario:

1. DHW is being executed for a strategy. The deposits are 1M USD. Assume that for example the best
off-chain computed path is taken for swaps. An intermediary token is reentrant.

2. The strategy registry communicated the provided funds and the withdrawn shares for the DHW
index to the strategy.

3. Funds are swapped.

4. The attacker reenters a vault that uses the strategy and flushes 1M USD. Hence, the funds to
deposit and shares to redeem for the DHW changed even though the DHW is already running.

5. The funds will be lost. However, the loss is split among all SVs.

6. However, the next DHW will treat the assets as deposits made by SVs. An attacker could maximize
his profit by depositing a huge amount and flushing to the DHW index where the donation will be
applied. Additionally, he could try flushing all other SVs with small amounts. The withdrawn shares
will be just lost.

To summarize, flushing could be reentered to manipulate the outcome of DHW due to bad inputs coming
from the strategy registry.

Code corrected:

Reentrancy protection has been added for this case.

6.7 No Deposit Due to Reentrancy Into
redeemFast()
Security High Version 1 Code Corrected

CS-SpoolV2-006

The DHW could be reentrant due to the underlying protocols allowing for reentrancy or the swaps being
reentrant. That reentrancy potential may allow an attacker to manipulate the perceived deposit value in
Strategy.doHardWork().

Consider the following scenario:

1. DHW is executed for a strategy. The deposits are 1M USD. Assume that for example the best
off-chain computed path is taken for swaps. An intermediary token is reentrant.

2. DHW checks the value of the strategy, which is 2M USD and fully controlled by the attacker's SV.

3. The DHW swaps the incoming assets. The attacker takes control of the execution.

4. The attacker redeems 1M USD with redeemFast(). The strategy's value drops to 1M USD.

5. DHW proceeds, a good swap is made and the funds are deposited into the protocol.

6. DHW retrieves the new strategy value which is now 2M USD.

Spool - Spool V2 - ChainSecurity - © Decentralized Security AG 26

https://chainsecurity.com

7. The perceived deposit is now 0 USD due to 2. and 6. However, the actual deposit was 1M USD.

Ultimately, the deposit made is treated as a donation to the attacker since zero shares are minted.

Similarly, such attacks are possible when redeeming SSTs with redeemStrategyShares().

Also, the attack could occur in regular protocol interactions if the underlying protocol has reentrancy
possibilities (e.g. protocol itself has a swapping mechanism). In such cases, the reallocation could be
vulnerable due to similar reasons in depositFast().

Code corrected:

Reentrancy protection has been added for this case.

6.8 Wrong Slippage Parameter in Curve Deposit
Correctness High Version 1 Code Corrected

CS-SpoolV2-007

Curve3CoinPoolBase._depositToProtocol() calculates an offset for the given slippage array.
This offset is then passed - without the actual array - into the function _depositToCurve(). The
add_liquidity() function of the Curve pool is then called with this offset parameter, setting the
slippage to always either 7 or 10:

uint256 slippage;
if (slippages[0] == 0) {
 slippage = 10;
} else if (slippages[0] == 2) {
 slippage = 7;
} else {
 revert CurveDepositSlippagesFailed();
}

_depositToCurve(tokens, amounts, slippage);

pool.add_liquidity(curveAmounts, slippage);

DHW calls can be frontrun to extract almost all value of this call.

Code corrected:

Curve3CoinPoolBase._depositToProtocol() now passes the correct value of the slippages
array to _depositToCurve().

6.9 Curve LP Token Value Calculation Can Be
Manipulated
Correctness Medium Version 1 Code Corrected

CS-SpoolV2-008

Spool - Spool V2 - ChainSecurity - © Decentralized Security AG 27

https://chainsecurity.com

Curve3CoinPoolBase._getUsdWorth() and ConvexAlusdStrategy._getTokenWorth()
calculate the value of available LP tokens in the following way:

for (uint256 i; i < tokens.length; ++i) {
 usdWorth += priceFeedManager.assetToUsdCustomPrice(
 tokens[i], _balances(assetMapping.get(i)) * lpTokenBalance / lpTokenTotalSupply, exchangeRates[i]
);
}

This is problematic as the pool exchanges tokens based on a curve (even though it is mostly flat).
Consider the following scenario (simplified for 2 tokens):

• The pool's current A value is 2000.

• The pool holds 100M of each token.

• The total LP value according to the given calculation is 200M USD.

• A big trade (200M) changes the holdings of the pool in the following way:

• 300M A token

• ~160 B token

• The total LP value according to the given calculation is now ~300M USD.

A sandwich attack on StrategyRegistry.doHardWork() could potentially skew the value of a
strategy dramatically (although an enormous amount of tokens would be required due to the flat curve of
the StableSwap pool). This would, in turn, decrease the number of shares all deposits in this DHW cycle
receive, shifting some of this value to the existing depositors.

All in all, an attacker must hold a large position on the strategy, identify a DHW that contains a large
deposit to the strategy and then sandwich attack it with a large amount of tokens. The attack is therefore
rather unlikely but has a critical impact.

Code corrected:

The Curve and Convex strategies now contain additional slippage checks for the given Curve pool's
token balances (and also the Metapool's balances in the case of ConvexAlusdStrategy) in
beforeDepositCheck. As this function is always called in doHardWork, the aforementioned sandwich
attack can effectively be mitigated by correctly set slippages. It is worth noting that these slippages can
be set loosely (to prevent the transaction from failing) as some less extreme fluctuations cannot be
exploited due to the functionality of the underlying Curve 3pool.

6.10 Deposits to Vault With Only Ghost Strategies
Possible
Correctness Medium Version 1 Code Corrected

CS-SpoolV2-009

Governance can remove strategies from vaults. It happens by replacing the strategy with the ghost
strategy. However, if an SV has only ghost strategies, deposits to it are still possible (checking the
deposit ratio always works since the ideal deposit ratio is 0 or due to the "one-token" mechanics).
However, flushing would revert. User funds could unnecessarily be lost. Similarly, redemptions would be
possible. Additionally, synchronization could occur if the ghost strategy is registered (which should not be
the case).

Spool - Spool V2 - ChainSecurity - © Decentralized Security AG 28

https://chainsecurity.com

Code corrected:

The case was disallowed by making a call to the newly implemented function _nonGhostVault, which
also gets called when redeeming and flushing. Hence, depositing to, redeeming and flushing from a
ghost vault is disabled.

6.11 Ghost Strategy Disables Functionality
Correctness Medium Version 1 Code Corrected

CS-SpoolV2-010

Governance can remove strategies from SVs by replacing them with the ghost strategy. This may break
redeemFast() on SVs due to StrategyRegistry.redeemFast() trying to call redeemFast() on
the ghost strategy.

Code corrected:

The iteration is skipped in case the current strategy is the ghost strategy. Hence, the function is not called
on the ghost strategy anymore.

6.12 Inconsistent Compound Strategy Value
Correctness Medium Version 1 Code Corrected

CS-SpoolV2-011

CompoundV2Strategy calculates the yield of the last DHW epoch with exchangeRateCurrent()
which returns the supply index up until the current block:

uint256 exchangeRateCurrent = cToken.exchangeRateCurrent();

baseYieldPercentage = _calculateYieldPercentage(_lastExchangeRate, exchangeRateCurrent);
_lastExchangeRate = exchangeRateCurrent;

On the other hand, _getUsdWorth() calculates the value of the whole strategy based on the output of
_getcTokenValue() which in turn calls Compound's exchangeRateStored():

if (cTokenAmount == 0) {
 return 0;
}

// NOTE: can be outdated if noone interacts with the compound protocol for a longer period
return (cToken.exchangeRateStored() * cTokenAmount) / MANTISSA;

This behavior has been acknowledged with a comment in the code. However, it can become problematic
in the following scenario:

• The compound protocol did not have interaction over a longer period.

• A user has deposited into a SmartVault that contains the CompoundV2Strategy.

• In the doHardWork() call, the strategy's _compound function does not deposit to the protocol (i.e.
the index is not updated in Compound). This can happen in the following cases:

• No COMP rewards have been accrued since the last DHW.

• The ROLE_DO_HARD_WORKER role has not supplied a SwapInfo to the strategy's
_compound function.

Spool - Spool V2 - ChainSecurity - © Decentralized Security AG 29

https://chainsecurity.com

In this case, the following line in Strategy.doHardWork() relies on outdated data:

usdWorth[0] = _getUsdWorth(dhwParams.exchangeRates, dhwParams.priceFeedManager);

usdWorth[0] is then used to determine the number of shares minted for the depositors of this DHW
epoch:

mintedShares = usdWorthDeposited * totalSupply() / usdWorth[0];

Since some interest is missing from this value, the depositors receive more shares than they are eligible
for, giving them instant gain.

Code corrected:

_getcTokenValue() now retrieves the current exchange rate instead of the stale one.

6.13 Strategy Value Manipulation
Security Medium Version 1 Code Corrected

CS-SpoolV2-043

SmartVaultManager.redeemFast() allows users to directly redeem their holdings on the underlying
protocols of the strategies in a vault. The function calls to Strategy.redeemFast() in which the
totalUsdValue of the respective strategy is updated.

This value can be manipulated in several ways:

• If the given Chainlink oracle for one of the assets is not returning a correct value, the user can
provide exchangeRateSlippages that would allow these false exchange rates to be used.

• If the strategy's correct value calculation depends on slippage values to be non-manipulatable, the
strategy's value can be changed with a sandwich attack as there is no possibility to enforce correct
behavior (see, for example, Curve LP token value calculation can be manipulated). Furthermore, this
sandwich attack is particularly easy to perform as the user is in control of the call that has to be
sandwiched (i.e., all calls can be performed in one transaction).

A manipulated strategy value is problematic for SmartVaultManager.reallocate() because the
totalUsdValue is used to compute how much value is moved/matched between strategies.

Note: This issue was disclosed by the Spool team during the review process of this report.

Code corrected:

reallocate() now computes the value of strategies directly, rather than relying on totalUsdValue
(which is now completely removed from the codebase),

6.14 Distribution to Ghost Strategy
Correctness Low Version 4 Code Corrected

CS-SpoolV2-040

DepositManager._distributeDepositSingleAsset assigns all dust to the first strategy in the
given array. There are no checks present to ensure that this strategy is not the Ghost strategy.

Spool - Spool V2 - ChainSecurity - © Decentralized Security AG 30

https://chainsecurity.com

Code corrected:

The code has been adjusted to add dust to the first strategy with a deposit.

6.15 Lack of Access Control for Setting Extra
Rewards
Correctness Low Version 3 Code Corrected

CS-SpoolV2-041

setExtraRewards() has no access control. However, an attacker could set the extra rewards to false
for a long time. Then, after their SV's first deposit to the strategy, could set it to true, so that they receive
more compounded yield than they should have received.

Code corrected:

The code has been corrected.

6.16 Wrong Error
IdleStrategy.beforeRedeemalCheck()
Correctness Low Version 3 Code Corrected

CS-SpoolV2-028

The range-check in IdleStrategy.beforeRedeemalCheck() reverts with the
IdleBeforeDepositCheckFailed error. However, IdleBeforeRedeemalCheckFailed would be
the suiting error.

Code corrected:

The correct error is used.

6.17 Access Control Not Central to Access
Control Contract
Correctness Low Version 1 Specification Changed

CS-SpoolV2-012

The specification defines that access control should be centralized in SpoolAccessControl:

All access control is handled centrally via SpoolAccessControl.sol.

However, the factory as an UpgradeableBeacon implements access control for changing
implementation which does not use the central access control contract.

Spool - Spool V2 - ChainSecurity - © Decentralized Security AG 31

https://chainsecurity.com

Specification changed:

The documentation has been clarified:

Access control is managed on three separate levels:

 - All privileged access pertaining to usage of the platform is handled
 through SpoolAccessControl.sol, which is based on OpenZeppelin’s
 AccessControl smart contract

 - Core smart contracts upgradeability is controlled through
 OpenZeppelin’s ProxyAdmin.sol

 - SmartVault upgradeability is controlled using OpenZeppelin’s
 UpgradeableBeacon smart contract

Hence, the access control for upgrading the beacons is now accordingly documented.

6.18 Asset Decimal in Price Feed
Design Low Version 1 Code Corrected

CS-SpoolV2-013

The asset decimals are given as an input parameter in setAsset(). Although being cheaper than
directly querying ERC20.decimals(), it is more prone to errors. Fetching the asset decimals through
the ERC20 interface could reduce such risks.

Code corrected:

ERC20.decimals() is now called to fetch the underlying asset decimals.

6.19 Bad Event Emissions
Correctness Low Version 1 Code Corrected

CS-SpoolV2-014

In StrategyRegistry.redeemFast(), the StrategySharesFastRedeemed() is emitted. The
assetsWithdrawn parameter of the event will be set to withdrawnAssets on every loop iteration.
However, that does not correspond to the assets withdrawn from a strategy but corresponds to the
assets withdrawn up to the strategy i.

Code corrected:

The event takes now strategyWithdrawnAssets as a parameter.

6.20 Broken Conditions on Whether Deposits
Have Occurred
Correctness Low Version 1 Code Corrected

CS-SpoolV2-015

Spool - Spool V2 - ChainSecurity - © Decentralized Security AG 32

https://chainsecurity.com

In DepositManager.flushSmartVault(), the condition
_vaultDeposits[smartVault][flushIndex][0] == 0 checks whether at least one wei of the
first token in the asset group has been deposited. However, the condition may be imprecise as it could
technically be possible to create deposits such that the deposit of the first asset could be zero while the
others are non-zero. A similar check is present in DepositManager.syncDepositsSimulate()
during deposit synchronization.

Note that this would lead to deposits not being flushed and synchronized (ultimately ignoring them).
While the user will receive no SVTs for very small deposits in general, the deposits here would be
completely ignored. Further, this behavior becomes more problematic for rather large asset groups
(given the checkDepositRatio() definition).

Code corrected:

The checks have been improved to consider the summation of
_vaultDeposits[smartVault][flushIndex] to all assets rather than only considering the first
asset in the group.

6.21 Deposit Deviation Can Be Higher Than
Expected
Design Low Version 1 Code Corrected

CS-SpoolV2-016

The deviation of deposits could be higher than expected due to the potentially exponential dropping
relation between the first and last assets. Note that the maximum deviation is the one from the minimum
ideal-to-deposit ratio to the maximum ideal-to-deposit ratio. Ultimately, given the current implementation,
this maximum deviation could be violated.

Code corrected:

The following mechanism has been implemented. First, a reference asset is found with an ideal weight
non-zero (first one found). Then, other assets are compared to that asset. Ultimately, each ratio is in the
range of the reference asset.

6.22 Inconsistent Handling of Funds on Strategy
Removal
Design Low Version 1 Code Corrected

CS-SpoolV2-018

When a strategy is removed from the strategy registry, the unclaimed assets by SVs are sent to the
emergency wallet. However, the funds flushed and unflushed underlying tokens are not (similarly the
minted shares are not).

Code corrected:

Spool - Spool V2 - ChainSecurity - © Decentralized Security AG 33

https://chainsecurity.com

Consistency was reevaluated. The corner case of an SV with non-flushed deposited assets was handled
by introducing a recovery function, namely DepositManager.recoverPendingDeposits(). The
other cases were specified as intended.

6.23 Misleading Constant Name
Design Low Version 1 Code Corrected

CS-SpoolV2-019

In SfrxEthHoldingStrategy the constant CURVE_ETH_POOL_SFRXETH_INDEX is used to determine
the coin ID in an ETH/frxETH Curve pool. Since the pool trades frxETH instead of sfrxETH, the naming of
the constant is misleading.

Code corrected:

Spool has changed CURVE_ETH_POOL_SFRXETH_INDEX to CURVE_ETH_POOL_FRXETH_INDEX.

6.24 Missing Access Control in Swapper
Security Low Version 1 Code Corrected

CS-SpoolV2-020

The Swapper.swap() function can be called by anyone. If a user accidentally sends funds to the
swapper or if it was called with a misconfigured SwapInfo struct, the remaining funds can be sent to an
arbitrary address by anyone.

Code corrected:

Spool has introduced a new function _isAllowedToSwap, which checks if the caller to
Swapper.swap() holds ROLE_STRATEGY or ROLE_SWAPPER role. ROLE_SWAPPER must now
additionally be assigned to the DepositSwap contract.

6.25 Missing Event Fields
Design Low Version 1 Code Corrected

CS-SpoolV2-021

The events PoolRootAdded and PoolRootUpdated of IRewardPool do not include added root (and
previous root in the case of PoolRootUpdated).

Code corrected:

The code has been adapted to include the added root.

6.26 No Sanity Checks on Slippage Type
Correctness Low Version 1 Code Corrected

CS-SpoolV2-022

Spool - Spool V2 - ChainSecurity - © Decentralized Security AG 34

https://chainsecurity.com

Some functions do not verify the value in slippages[0]. Some examples are:

1. IdleStrategy._emergencyWithdrawImpl does not check if slippages[0] == 3.

2. IdleStrategy._compound does not check if slippages[0] < 2.

Code corrected:

All relevant functions now check that slippages[0] has the expected value and revert otherwise.

6.27 Precision Loss in Notional Finance Strategy
Correctness Low Version 1 Code Corrected

CS-SpoolV2-023

NotionalFinanceStrategy._getNTokenValue() calculates the value of the strategy's nToken
balance in the following way:

(nTokenAmount * uint256(nToken.getPresentValueUnderlyingDenominated()) / nToken.totalSupply())
 * underlyingDecimalsMultiplier / NTOKEN_DECIMALS_MULTIPLIER;

nToken.getPresentValueUnderlyingDenominated() returns values similar or notably smaller
than nToken.totalSupply. On smaller amounts of nToken balances, precision is lost in this
calculation.

Code corrected:

The implementation of _getNTokenValue() has been changed to the following:

(nTokenAmount * uint256(nToken.getPresentValueUnderlyingDenominated()) * _underlyingDecimalsMultiplier)
 / nToken.totalSupply() / NTOKEN_DECIMALS_MULTIPLIER;

All divisions are now performed after multiplications, ensuring that precision loss is kept to a minimum.

6.28 Redemption Executor
Correctness Low Version 1 Code Corrected

CS-SpoolV2-025

Redemptions will enter WithdrawalManager._validateRedeem() that will run Withdrawal guards
with the redeemer as the executor. However, when called through
SmartVaultManager.redeemFor() the actual executor is a user with
ROLE_SMART_VAULT_ALLOw_REDEEM. This address is neither sent through RedeemBag nor
RedeemExtras. In this case, WithdrawalManager._validateRedeem() runs the guards with the
executor being set as the redeemer.

Code corrected:

The executor is now more accurately handled.

Spool - Spool V2 - ChainSecurity - © Decentralized Security AG 35

https://chainsecurity.com

6.29 State Inconsistencies Possible
Correctness Low Version 1 Code Corrected

CS-SpoolV2-042

SmartVaultManager.redeemFast() allows users to redeem their holdings directly from underlying
protocols. In contrast to StrategyRegistry.doHardWork(), users can set the slippages for
withdrawals themselves which could potentially lead to users setting slippages that do not benefit them.

This is problematic because the amount of shares actually redeemed in the underlying protocol is not
accounted for. Since some protocols redeem on a best-effort basis, fewer shares may be redeemed than
requested (this is, for example, the case in the YearnV2Strategy). If this happens, and the user sets
wrong slippages, the protocol burns all SVTs the user requested but does not redeem all the respective
shares of the underlying protocol leading to an inconsistency that unexpectedly increases the value of the
remaining SVTs.

Code corrected:

The code for the Yearn V2 strategy has been adapted to check for full redeemals.

6.30 Unused Functions
Design Low Version 1 Code Corrected

CS-SpoolV2-026

The following functions of MasterWallet are not used:

1. approve

2. resetApprove

Code corrected:

These functions have been removed.

6.31 Unused Variable
Design Low Version 1 Code Corrected

CS-SpoolV2-044

1. DepositSwap.swapAndDeposit() takes an input array of SwapInfo, which contains
amountIn. This function however takes an input array of inAmounts.

2. The mapping DepositManager._flushShares is defined as internal and its subfield
flushSvtSupply is never read.

3. WithdrawalManager._priceFeedManager is set but never used.

Code corrected:

The code has been adapted to remove the unused variables.

Spool - Spool V2 - ChainSecurity - © Decentralized Security AG 36

https://chainsecurity.com

6.32 Validation of Specification
Design Low Version 1 Code Corrected

CS-SpoolV2-027

The specification of an SV is validated to ensure that the SV works as the deployer would expect it.
However, some checks could be missing. Examples of such potentially missing checks are:

1. Request type validation for actions: Only allow valid request types for action (some request types
are not used for some actions).

2. If static allocations are used, specifying a risk provider, a risk tolerance or an allocation provider
may not be meaningful as they are not stored. Similarly, if only one strategy is used it could be
meaningful to enforce a static allocation.

3. Static allocations do not enforce the 100% rule that the allocation providers enforce. For
consistency, such a property could be enforced.

Code corrected:

The code has been adapted to enforce stronger properties on the specification.

6.33 Distinct Array Lengths
Informational Version 1 Code Corrected

CS-SpoolV2-029

Some arrays that are iterated over jointly can have distinct lengths which lead to potentially unused
values and a result different from what was expected due to human error or a revert.

Examples of a lack of array length checks in the specification when deploying an SV through the factory
are:

1. actions and actionRequestTypes in ActionManager.setActions() may have distinct
length. Some request-type values may remain unused.

2. Similarly, this holds for guards.

3. In the strategy registry's doHardWork(), the base yields array could be longer than the strategies
array.

4. In assetToUsdCustomPriceBulk() the array lengths could differ. When used internally, that will
not be the case while when used externally that could be the case. The semantics of this are
unclear.

5. calculateDepositRatio() and calculateFlushFactors() in DepositManager are
similar to 4.

Code corrected:

The missing checks in 1-3 have been added. However, for 4-5 which are view functions, Spool decided
to keep as is.

6.34 Errors in NatSpec
Informational Version 1 Specification Changed

Spool - Spool V2 - ChainSecurity - © Decentralized Security AG 37

https://chainsecurity.com

CS-SpoolV2-030

At several locations, the NatSpec is incomplete or missing. The following is an incomplete list of
examples:

1. IGuardManager.RequestContext: not all members of the struct are documented.

2. IGuardManager.GuardParamType: not all items of the enum are documented.

3. _stateAtDhw has no NatSpec.

4. IDepositManager.SimulateDepositParams: documentation line of bag mentions
oldTotalSVTs along with flush index and lastDhwSyncedTimestamp.

5. StrategyRegistry._dhwAssetRatios: is a mapping to the asset ratios, as the name
suggests; however, the spec mentions exchange rate.

6. StrategyRegistry._updateDhwYieldAndApy(): it only updates APY and not the yield for a
given dhwIndex and strategy.

7. RewardManager.addToken(): callable only by either DEFAULT_ADMIN_ROLE or
ROLE_SMART_VAULT_ADMIN of an SV and not "reward distributor" as mentioned in the
specification.

Specification changed:

The NatSpec was improved. Naming of StrategyRegistry._updateDhwYieldAndApy() was
changed to _updateApy().

6.35 Gas Optimizations
Informational Version 1 Code Corrected

CS-SpoolV2-031

Some parts of the code could be optimized in terms of gas usage. Reducing gas costs may improve user
experience. Below is an incomplete list of potential gas inefficiencies:

1. claimSmartVaultTokens() could early quit if the claimed NFT IDs are claimed. Especially, that
may be relevant in cases in the redeem functions where a user can specify W-NFTs to be
withdrawn.

2. The FlushShares struct has a member flushSvtSupply that is written when an SV is flushed.
However, that value is never used and hence the storage write could be removed to reduce gas
consumption.

3. swapAndDeposit() queries the token out amounts with balanceOf(). Swapper.swap()
returns the amounts. However, the return value is unused.

4. RewardManager() inherits from ReentrancyGuardUpgradeable. It further is initializable,
initializing only the reentrancy guard state. However, reentrancy locks are not used.

5. The constructor of SmartVaultFactory checks whether the implementation is 0x0. However, in
UpgradeableBeacon an isContract() check is made.

6. In redeemFast() the length of the NFT IDs and amounts is ensured to be equal. However, in
DepositManager.claimSmartVaultTokens() the same check is made.

7. In the internal function SmartVaultManager._redeem(), the public method
flushSmartVault() is used. The _onlyRegisteredSmartVault() check will be performed
twice.

8. IStrategy.doHardwork() could return the assetRatio() with the DHW info so that a
staticcall to IStrategy.assetRatio() in StrategyRegistry.doHardwork() is not needed.

Spool - Spool V2 - ChainSecurity - © Decentralized Security AG 38

https://chainsecurity.com

9. In _validateRedeem() the balance of the redeemer is checked. However, that check is made
when the SVTs are transferred to the SV.

10. The input argument vaultName_ in SmartVault.initialize can be defined as calldata.

11. SmartVault.transferFromSpender() gets called only by WithdrawalManager with
spender equal to from.

12. SmartVault.burnNFT() checks that the owner has enough balance to burn. The same condition
is later checked as it calls into _burnBatch.

13. The struct SmartVaultSpecification in SmartVaultFactory has an inefficient ordering of
elements. For example, by moving allowRedeemFor below allocationProvider its storage
layout decreases by one slot.

14. The struct IGuardManager.GuardDefinition shows an inefficient ordering.

15. Where ReallocationLib.doReallocation() computes sharesToRedeem, it can replace
totals[0] - totals[1] with totalUnmatchedWithdrawals.

16. SmartVaultManager._simulateSync() increments the memory variable
flushIndex.toSync which is neither used later nor returned as a return value.

17. SmartVaultManager._redeem() calls flushSmartVault. However, the internal function
_flushSmartVault could directly be called.

18. SmartVaultManager._redeem() accesses the storage variable
_flushIndexes[bag.smartVault] twice. It could be cached and reused once.

19. StrategyRegistry.doHardWork() reads _assetsDeposited[strategy][dhwIndex][k]
twice. Similar to the issue above, it could be cached.

20. UsdPriceFeedManager.assetToUsdCustomPriceBulk() could be defined as external.

21. WithdrawalManager.claimWithdrawal() can be defined as an external function.

22. RewardManager.forceRemoveReward() eventually removes
rewardConfiguration[smartVault][token], which is already removed in
_removeReward().

23. RewardPool.claim() can simply set
rewardsClaimed[msg.sender][data[i].smartVault][data[i].token] to
data[i].rewardsTotal.

24. SmartVaultManager._simulateSyncWithBurn() can fetch fees after checking all DHWs
are completed.

25. Strategies are calling AssetGroupRegistry.listAssetGroup in multiple functions. The token
addresses could instead be cached in the strategy the avoid additional external calls.

26. REthHoldingStrategy._emergencyWithdrawImpl() reverts if slippages[0] != 3. This
check can be accomplished at the very beginning of the function.

27. REthHoldingStrategy._depositInternal() can have an early return if
amounts[0] < 0.01 ETH. It is mentioned in its documentations, that the smallest deposit value
should be 0.01 ETH

28. The input parameter strategyName_ of SfrxEthHoldingStrategy.initialize() can be
defined as calldata.

29. Strategy calls _swapAssets and then loads the balances of each token again. Since
_swapAssets is not used in all of the strategies, the subsequent balanceOf calls by checking if
_swapAssets actually performed any actions.

Code corrected:

Spool - Spool V2 - ChainSecurity - © Decentralized Security AG 39

https://docs.rocketpool.net/guides/staking/overview.html#how-ethereum-staking-works
https://chainsecurity.com

While not every improvement has been implemented, gas consumption has been reduced.

6.36 NFT IDs
Informational Version 1 Code Corrected

CS-SpoolV2-032

The NFT IDs are in the following ranges:

• D-NFTs: [1, 2**255 - 2]

• W-NFTs: [2**255 + 1, 2**256 - 2]

Note that the ranges could be technically increased. Further, in theory, there could be many more
withdrawals than deposits. The sizes do not reflect that. However, in practice, a scenario with such a
large number of redemptions does not seen to be realistic. Additionally, getMetaData() will return
deposit meta data for ID 0 and 2**255 - 1. However, these are not valid deposit NFT IDs. Similarly,
the function returns metadata for invalid withdrawal NFTs. However, these remain empty. Last,
technically one could input such IDs for burn (using 0 shares burn). Similarly, one could burn others'
NFTs (0 amounts).

Ultimately, the effects of this may create confusion.

Code corrected:

The range of valid NFT-IDs has been increased.

6.37 Nameless ERC20
Informational Version 1 Code Corrected

CS-SpoolV2-033

The SVT ERC-20 does not have a name. Specifying a name may help third-party front-ends (e.g.
Etherscan) to display useful information to users for a better user experience.

Code corrected:

The SVT now has a name and symbol for its ERC-20. Additionally, the ERC-1155 has a URI now.

6.38 Reverts Due to Management Fee
Informational Version 1 Code Corrected

CS-SpoolV2-035

An SV can have a management fee that is computed as

totalUsd[1] * parameters.fees.managementFeePct * (result.dhwTimestamp - parameters.bag[1])
 / SECONDS_IN_YEAR / FULL_PERCENT;

It could be the case that more than one year has passed between the two timestamps. Ultimately the
condition

parameters.fees.managementFeePct * (result.dhwTimestamp - parameters.bag[1]) > SECONDS_IN_YEAR * FULL_PERCENT

Spool - Spool V2 - ChainSecurity - © Decentralized Security AG 40

https://chainsecurity.com

could hold if at least around 20 years have passed. That would make the fee greater than the total value.

Ultimately,

result.feeSVTs = localVariables.svtSupply * fees / (totalUsd[1] - fees);

could revert.

Code corrected:

The code was corrected by limiting the dilution of SVTs so that the subtraction cannot revert.

6.39 Simplifying Performance Fees
Informational Version 1 Code Corrected

CS-SpoolV2-036

The performance fees could further be simplified to

strategyUSD * interimYieldPct / (1 + interimYieldPct * (1-totalPlatformFees))

which is equivalent to the rather complicated computations made in the current implementation.

Code improved:

The readability of the code has been improved by simplifying the computation.

6.40 Strategy Removal for an SV Possible That
Does Not Use It
Informational Version 1 Code Corrected

CS-SpoolV2-037

The event StrategyRemovedFromVaults gets emitted for a strategy even if the SV does not use the
strategy.

Code corrected:

The event is now emitted per vault that uses the strategy. Furthermore, the name of this event has been
changed to StrategyRemovedFromVault.

6.41 Tokens Can Be Enabled Twice
Informational Version 1 Code Corrected

CS-SpoolV2-038

In AssetGroupRegistry, the same token can be allowed multiple times. Although it does not make
any difference, regarding the internal state, it emits an event of TokenAllowed again.

Spool - Spool V2 - ChainSecurity - © Decentralized Security AG 41

https://chainsecurity.com

Code corrected:

The event is not emitted anymore in such cases.

Spool - Spool V2 - ChainSecurity - © Decentralized Security AG 42

https://chainsecurity.com

7 Informational
We utilize this section to point out informational findings that are less severe than issues. These
informational issues allow us to point out more theoretical findings. Their explanation hopefully improves
the overall understanding of the project's security. Furthermore, we point out findings which are unrelated
to security.

7.1 Packed Arrays With Too Big Values Could
DOS the Contract
Informational Version 1 Risk Accepted

CS-SpoolV2-034

The packed array libraries could technically DOS the system due to reverts on too high values. For
storing DHW indexes this is rather unlikely given the expectation that it will be only called every day or
two (would generally require many DHWs). It is also expected that the withdrawn strategy shares will be
less than or equal to uint128.max. Though theoretically speaking DOS on flush is possible, the
conditions on the practical example are very unlikely.

Risk accepted:

Spool replied:

We agree that theoretically packed arrays could overflow and revert, however,
we did some calculations and this should never happen in practice.

Spool - Spool V2 - ChainSecurity - © Decentralized Security AG 43

https://chainsecurity.com

8 Notes
We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

8.1 Bricked Smart Vaults
Note Version 1

Some Smart Vaults may be broken when they are deployed.

An example of such broken SVs could be that a malicious SV owner could deploy a specification with
guards that allow deposits but disallow withdrawals (e.g. claiming SVT). Moreover, the owner may deploy
a specification that is seemingly safe from the user's perspective while then maliciously changing the
behaviour of the guard (e.g. removing from the allow list, upgrading the guard).

Another example could be where transfers between users could be allowed while the recipient could be
blocked from redemption.

Similarly, actions or other addresses could be broken.

Users, before interacting with an SV, should be very carefully studying the specification. Similarly,
deployers should be knowledgeable about the system so that they can create proper specifications to not
create bricked vaults by mistake.

8.2 Curve Asset Ratio Slippage
Note Version 1

Curve strategies return the current balances of the pool in their assetRatio() functions. These ratios
are cached once at the end of each DHW. For all deposits occurring during the next DHW epoch, the
same ratios are used although the ratios on the pool might change during that period. It is therefore
possible, that the final deposit to the protocol incurs a slight slippage loss.

Given the size and parameters of the pools, this cost should be negligible in most cases.

8.3 DOS Potential for DHWs Due to External
Protocols
Note Version 1

DHWs could be blocked in case external protocols cannot accept or return funds. For example, if Aave
v2 or Compound v2 have 100% utilization, DHWs could be blocked if withdrawals are necessary. This
can in turn prolong the time until deposits earn interest and become withdrawable again.

8.4 ERC-1155 balanceOf()
Note Version 1

The balanceOf() function of the SV's ERC-1155 returns 1 if the user has any balance. The standard
defines that the function should return the balance which in this case is defined as the "fractional

Spool - Spool V2 - ChainSecurity - © Decentralized Security AG 44

https://chainsecurity.com

balance". Depending on the interpretation of EIP-1155, this could still match the standard. However, such
a deviation from the "norm" could break integrations.

8.5 Management Fee Considerations
Note Version 1

Users should be aware that the management fee is not taken based on the vault value at the beginning of
the flush cycle but at the end of it (hence, including the potential yield of strategies, however not including
fresh deposits).

8.6 Ordering of Swaps in Reallocations and
Swaps
Note Version 1

The privileged user doing reallocation or swaps (e.g. the one holding ROLE_DO_HARD_WORKER) should
take an optimal path when performing the swaps, as depositing to/withdrawing from a strategy changes
its value.

Also, note that some strategies could be affected more by bad trades due to the swaps being performed
in the order of the strategies. For example:

1. depositFast() to the first strategy happens. The swap changes the price in the DEX.

2. depositFast() to the second strategy happens. The swap works at a worse price than the first
strategy.

Ultimately, some deposits could have worse slippage.

8.7 Price Aggregators With More Than 18
Decimals
Note Version 1

Setting price aggregators with more than 18 decimals will revert in
UsdPriceFeedManager.setAsset(). Such are not supported by the system.

8.8 Public Getter Functions
Note Version 1

Users should be aware that some public getters provide only meaningful results with the correct input
values (e.g. getClaimedVaultTokensPreview()). When used internally, it is ensured that the inputs
are set such that the results are meaningful.

8.9 Reentrancy Potential
Note Version 1

Spool - Spool V2 - ChainSecurity - © Decentralized Security AG 45

https://chainsecurity.com

Version 2While reentrancy protection was implemented in of the code, some potential for
reentrancy-based attacks may still exist. However, it highly depends on the underlying strategies. Future
unknown strategies could introduce vulnerable scenarios.

An example could be a strategy that swaps both on compounding and on deposits in DHW. If it is
possible to manipulate the USD value oracle of the strategy (e.g. similar to Curve), then one could
effectively generate a scenario that creates 0-deposits or "bypasses" the pre-deposit/redeemal checks.

8.10 Reward Pool Updates
Note Version 1

The ROLE_REWARD_POOL_ADMIN should be very careful, when updating the root of a previous cycle (if
necessary), as it could break the contract for certain users.

8.11 Slippage Loss in alUSD Strategy
Note Version 1

ConvexAlusdStrategy never invests alUSD into the corresponding Curve pool. This can result in a
slight slippage loss due to unbalanced deposits. Both deposits and withdrawals are subject to this
problem.

The loss is negligible up to a certain amount of value deposited/withdrawn. After that, there is no limit
though. At the time this report was written, a withdrawal of 10M LP tokens to 3CRV incurs a loss of
roughly 25%.

8.12 Special Case: Compound COMP Market
Note Version 1

Compound v2 currently has an active market for the COMP token. In this case, deposits to the
CompoundV2Strategy would be absorbed by the _compound() function if a compoundSwapInfo
has been set for the strategy. The correct handling is therefore completely dependent on the role
ROLE_DO_HARD_WORKER and is not enforced on-chain.

8.13 Unsupported Markets
Note Version 1

Some markets of the supported protocols in Spool V2's strategies might be problematic:

• Aave markets in which the aToken has different decimals than the underlying. While this is not the
case for any aToken currently deployed, Aave does not guarantee that this will be the case in the
future.

• Compound supports fee-taking tokens. If such a market would be integrated into Spool V2, it could
be problematic as the CompoundV2Strategy._depositToCompoundProtocol() does not
account for the return value of Compound's mint() function.

• Compound's cETH market is unsupported due to it requiring support for native ETH and hence
having a different interface than other cTokens.

Spool - Spool V2 - ChainSecurity - © Decentralized Security AG 46

https://chainsecurity.com

8.14 Value of the alUSD Strategy's Metapool LP
Token Overvalued
Note Version 1

The Curve metapool that is used in the ConvexAlusdStrategy allows to determine the value of LP
tokens, if only one of the 2 underlying tokens is withdrawn, with the function
calc_withdraw_one_coin(). This is used in the strategy to determine the value of one token which
is then scaled up by the actual LP token amount.

The function, however, does not linearly scale with the amount of LP tokens due to possible slippage loss
with higher amounts. The LP tokens are therefore overvalued.

Spool - Spool V2 - ChainSecurity - © Decentralized Security AG 47

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.2.1 Smart Vaults
	2.2.2 Strategies
	2.2.3 Strategy
	2.2.3.1 Curve
	2.2.3.2 Convex
	2.2.3.3 Aave V2
	2.2.3.4 Compound V2
	2.2.3.5 Idle
	2.2.3.6 Morpho
	2.2.3.7 Notional
	2.2.3.8 Rocket Pool
	2.2.3.9 Frax
	2.2.3.10 Lido
	2.2.3.11 Yearn

	2.2.4 Guards
	2.2.5 Actions
	2.2.6 Asset Group Registry
	2.2.7 Risk Manager
	2.2.8 Allocation Provider
	2.2.8.1 Uniform Allocation Provider
	2.2.8.2 Linear Allocation Provider
	2.2.8.3 Exponential Allocation Provider

	2.2.9 USD Price Feed Manager
	2.2.10 Master Wallet
	2.2.11 Access Control
	2.2.12 Swapper
	2.2.13 Deposit Swap
	2.2.14 Rewards
	2.2.15 Roles & Trust Model

	3 Limitations and use of report
	4 Terminology
	5 Findings
	5.1 Read-only Reentrancy

	6 Resolved Findings
	6.1 Lack of Access Control in recoverPendingDeposits()
	6.2 DOS Synchronization by Dividing With Zero Redeemed Shares
	6.3 DOS on Deposit Synchronization
	6.4 Donation Attack on SST Minting
	6.5 Donation Attack on SVT Minting
	6.6 Flushing Into Ongoing DHW Leading to Loss of Funds
	6.7 No Deposit Due to Reentrancy Into redeemFast()
	6.8 Wrong Slippage Parameter in Curve Deposit
	6.9 Curve LP Token Value Calculation Can Be Manipulated
	6.10 Deposits to Vault With Only Ghost Strategies Possible
	6.11 Ghost Strategy Disables Functionality
	6.12 Inconsistent Compound Strategy Value
	6.13 Strategy Value Manipulation
	6.14 Distribution to Ghost Strategy
	6.15 Lack of Access Control for Setting Extra Rewards
	6.16 Wrong Error IdleStrategy.beforeRedeemalCheck()
	6.17 Access Control Not Central to Access Control Contract
	6.18 Asset Decimal in Price Feed
	6.19 Bad Event Emissions
	6.20 Broken Conditions on Whether Deposits Have Occurred
	6.21 Deposit Deviation Can Be Higher Than Expected
	6.22 Inconsistent Handling of Funds on Strategy Removal
	6.23 Misleading Constant Name
	6.24 Missing Access Control in Swapper
	6.25 Missing Event Fields
	6.26 No Sanity Checks on Slippage Type
	6.27 Precision Loss in Notional Finance Strategy
	6.28 Redemption Executor
	6.29 State Inconsistencies Possible
	6.30 Unused Functions
	6.31 Unused Variable
	6.32 Validation of Specification
	6.33 Distinct Array Lengths
	6.34 Errors in NatSpec
	6.35 Gas Optimizations
	6.36 NFT IDs
	6.37 Nameless ERC20
	6.38 Reverts Due to Management Fee
	6.39 Simplifying Performance Fees
	6.40 Strategy Removal for an SV Possible That Does Not Use It
	6.41 Tokens Can Be Enabled Twice

	7 Informational
	7.1 Packed Arrays With Too Big Values Could DOS the Contract

	8 Notes
	8.1 Bricked Smart Vaults
	8.2 Curve Asset Ratio Slippage
	8.3 DOS Potential for DHWs Due to External Protocols
	8.4 ERC-1155 balanceOf()
	8.5 Management Fee Considerations
	8.6 Ordering of Swaps in Reallocations and Swaps
	8.7 Price Aggregators With More Than 18 Decimals
	8.8 Public Getter Functions
	8.9 Reentrancy Potential
	8.10 Reward Pool Updates
	8.11 Slippage Loss in alUSD Strategy
	8.12 Special Case: Compound COMP Market
	8.13 Unsupported Markets
	8.14 Value of the alUSD Strategy's Metapool LP Token Overvalued

