

PUBLIC

Code Assessment

of the KyberSwap Elastic

Smart Contracts

December 06, 2021

Produced for

by

Contents

1 Executive Summary 3

2 Assessment Overview 5

3 Limitations and use of report 9

4 Terminology 10

5 Findings 11

6 Resolved Findings 12

7 Notes 20

Kyber Network - KyberSwap Elastic - ChainSecurity - © Decentralized Security AG 2

https://chainsecurity.com

1 Executive Summary
Dear Loi, Dear Victor,

Thank you for trusting us to help Kyber Network with this security audit. Our executive summary is
providing a holistic overview of KyberSwap Elastic to support you in forming an opinion on its smart
contract security risk.

KyberSwap Elastic is an automated market maker (AMM) implementation, that allows liquidity providers
to concentrate the liquidity in a certain price range.

The most critical audit subjects are functional correctness, external dependency integration and
protection against adversarial agents. We found some deviations from the functional correctness which
were reported. Regarding external dependency integration, we found minor mismatch from standard.
Lastly, bugs that limited the AntiSniping (aka JIT liquidity provision) protection were reported.

The general audit subjects covered include trustworthiness, documentation, and gas efficiency.
Regarding trustworthiness, while pools are not upgradable, there are certain system parameters like
whitelisted position managers that can be set only by privileged ConfigMaster role holder. We found
certain parts of the documentation that could be improved so that other projects can better integrate with
the Kyber Network protocol. Lastly, minor possible improvements to gas efficiency were reported.

In summary, we find that the codebase at last version commit in Scope provides provides a high level of
security. It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities.
Since the protocol logic is quite sophisticated, techniques such as property based testing and formal
verification can bring valuable additional assurance. They complement but don't replace other vital
measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

1.1 Overview of the Findings
Below we provide a brief numerical overview of the findings and how they have been addressed.

Critical -Severity Findings 0

High -Severity Findings 3

• Code Corrected 3

Medium -Severity Findings 2

• Code Corrected 2

Low -Severity Findings 10

Kyber Network - KyberSwap Elastic - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

• Code Corrected 7

• Specification Changed 3

Kyber Network - KyberSwap Elastic - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

2 Assessment Overview
In this section, we briefly describe the overall structure and scope of the engagement including the code
commit which is referenced throughout this report.

2.1 Scope
The assessment was performed on following source code files inside the KyberSwap Elastic repository
based on the documentation files:

• contracts/Factory.sol

• contracts/interfaces/callback/IFlashCallback.sol

• contracts/interfaces/callback/IMintCallback.sol

• contracts/interfaces/callback/ISwapCallback.sol

• contracts/interfaces/IFactory.sol

• contracts/interfaces/IPool.sol

• contracts/interfaces/periphery/IBasePositionManager.sol

• contracts/interfaces/periphery/IERC721Permit.sol

• contracts/interfaces/periphery/INonfungibleTokenPositionDescriptor.sol

• contracts/interfaces/periphery/IRouter.sol

• contracts/interfaces/periphery/IRouterTokenHelper.sol

• contracts/interfaces/periphery/IRouterTokenHelperWithFee.sol

• contracts/interfaces/pool/IPoolActions.sol

• contracts/interfaces/pool/IPoolEvents.sol

• contracts/interfaces/pool/IPoolStorage.sol

• contracts/libraries/BaseSplitCodeFactory.sol

• contracts/libraries/CodeDeployer.sol

• contracts/libraries/Linkedlist.sol

• contracts/libraries/LiqDeltaMath.sol

• contracts/libraries/MathConstants.sol

• contracts/libraries/QtyDeltaMath.sol

• contracts/libraries/QuadMath.sol

• contracts/libraries/ReinvestmentMath.sol

• contracts/libraries/SafeCast.sol

• contracts/libraries/SwapMath.sol

• contracts/periphery/AntiSnipAttackPositionManager.sol

• contracts/periphery/base/DeadlineValidation.sol

• contracts/periphery/base/ERC721Permit.sol

• contracts/periphery/base/ImmutablePeripheryStorage.sol

• contracts/periphery/base/LiquidityHelper.sol

Kyber Network - KyberSwap Elastic - ChainSecurity - © Decentralized Security AG 5

https://chainsecurity.com

• contracts/periphery/BasePositionManager.sol

• contracts/periphery/base/RouterTokenHelper.sol

• contracts/periphery/base/RouterTokenHelperWithFee.sol

• contracts/periphery/libraries/AntiSnipAttack.sol

• contracts/periphery/libraries/LiquidityMath.sol

• contracts/periphery/libraries/PathHelper.sol

• contracts/periphery/libraries/PoolAddress.sol

• contracts/periphery/libraries/TokenHelper.sol

• contracts/periphery/Router.sol

• contracts/Pool.sol

• contracts/PoolStorage.sol

• contracts/PoolTicksState.sol

The table below indicates the code versions relevant to this report and when they were received.

V
Date Commit Hash Note

1
16 October 2021 f552ef1a2d89f16f7b7f195d56d1ced1eb151695 Initial Version

2
25 November
2021

520a775874f8e30feabcd44eebfdffc2ac35b928 Version with fixes

3
04 December
2021

650064b8d1a49083f6054111b82d994f51abec
45

Second Version with fixes

For the solidity smart contracts, the compiler version 0.8.9 was chosen.

2.1.1 Excluded from scope
All smart contracts that are not mentioned in the above section. The imported libraries and smart
contracts that are not mentioned in the Scope sections were assumed to be adhering to their
specification

2.2 System Overview
Version 1This system overview describes the initially received version () of the contracts as defined in the

Assessment Overview.

Furthermore, in the findings section we have added a version icon to each of the findings to increase the
readability of the report.

KyberSwap Elastic is a version of noncustodial dynamic market maker protocol implementation, that is
similar to Kyber DMM v1 and other AMM protocols. It differs from Kyber DMM v1 in two main ways:

1. Concentrated liquidity: similar to Uniswap V3 protocol, KyberSwap Elastic allows liquidity provides
(LPs) to provide liquidity into a specific price range. This allows more effective liquidity utilization for
the LPs.

2. Reinvestment curve: this curve allows LP fees to be automatically reinvested into the pool, thus
achieving the compounding interest for LP position.

Kyber Network - KyberSwap Elastic - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

The constant product formula for a fixed price p = y/x is represented as:

x * y = (Lp + Lr)2

, where L
p
 is an aggregated liquidity from all DMM LPs positions that provide liquidity for a given price p

and L
r
 is a liquidity provided by the reinvestment curve. All fees collected from swaps effectively increase

the L
r
 amount. When a swap changes the L

p
 value (due to a p price change) or when users add/remove

liquidity from the pool, the reinvestment tokens (RTokens) are minted for the DMM position owners.
These RTokens can be burned in the Pool for a share of underlying collateral.

The main contracts of the KyberSwap Elastic are:

• Factory

• Pool

• Router

• AntiSnipAttackPositionManager

2.2.1 Factory
Factory provides governance fee destination and percentage via feeConfiguration function. Factory
contract creates new Pool contracts for given pair of tokens and swap fee. The implementation code of
new Pool contracts that factory creates cannot be updates. Pool contracts themselves are also not
upgradable. Factory also stores all whitelisted position managers for the Pool contracts. Factory has one
privilege role: Configuration master. Holder of this role can:

• Change configuration master

• Enable whitelisting

• Adding new position manager contracts to the whitelist

• Update Vesting period duration (Used by AntiSnipAttackPositionManager)

• Change governance fee and governance fee recipient. Governance fee cannot be higher than 20%.

• Adding new fee values and distances that pools can support.

2.2.2 Pool
LPs can deposit the funds into the Pool contract and provide the liquidity for swaps in a defined price
range. Swaps effectively "takes" funds from msg.sender and "gives" them to the argument provided
recipient. The "taken" amount also contains the fee amount that is deposited into the Pool as
reinvestment curve liquidity. Part of this fee goes to the governance address. The minted RTokens are
ERC20 tokens that can be transferred and burned to get the share of reinvestment curve liquidity.

Pool supports flash loan functionality. The flash loan fee % is same as swap fee and this fee goes to the
factory defined governance fee destination address.

2.2.3 Router
Pool contracts rely on callbacks to get the funds from message sender. Router contract acts as a service
contracts, that allows using token approvals to fulfill the callback request from pool. In addition, using the
swap path data, the user can perform chain of swaps between multiple pairs of tokens.

Kyber Network - KyberSwap Elastic - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

2.2.4 AntiSnipAttackPositionManager
Snipping attack is a novel attack vector for concentrated liquidity pools. It is also known as : Just-in-Time
Liquidity (JIT). A malicious liquidity provider can add and remove liquidity atomically in one block,
sandwiching the swap transactions. This way the attacker gains majority of the swap fees, while having
no impermanent loss risk. AntiSnipAttackPositionManager is a contract that prevents snipping attack, by
introducing a vesting period for the acquired fees. The LPs who want to add liquidity, create a ERC721
unique token. AntiSnipAttackPositionManager contract will act as a direct liquidity provider on for the pool
and will receive and hold the RTokens from fees. It does so by locking aside the appropriate part of
RTokens and paying out the vested RTokens. The amount of withdrawable fees linearly grows during the
vesting period, that is defined on factory contract. If the position is liquidated before the end of vesting
period, still locked tokens will be burned without profit. Effectively, this prevents creation and destruction
of the liquidity position in the same block and does not allow the malicious LPs to avoid the impermanent
loss risk.

2.2.5 Assumptions
During the assessment we relied on following assumptions:

• Factory ConfigMaster role holder is trusted non-malicious actor

• System parameters are coherent with one another and with global network parameters. For
example, vestingPeriod parameter should be large enough to prevent a minimal risk snipping
attack.

Kyber Network - KyberSwap Elastic - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

3 Limitations and use of report
Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts associated with the items defined in the
engagement letter on whether it is used in accordance with its specifications by the user meeting the
criteria predefined in the business specification. We draw attention to the fact that due to inherent
limitations in any software development process and software product an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third party technology stack itself. Report readers should also take into account
the facts that over the life cycle of any software product changes to the product itself or to its
environment, in which it is operated, can have an impact leading to operational behaviours other than
initially determined in the business specification.

Kyber Network - KyberSwap Elastic - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

4 Terminology
For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

• Likelihood represents the likelihood of a finding to be triggered or exploited in practice

• Impact specifies the technical and business-related consequences of a finding

• Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severities. These severities
are derived from the likelihood and the impact using the following table, following a standard risk
assessment procedure.

Likelihood Impact
High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

Kyber Network - KyberSwap Elastic - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

5 Findings
In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

• Security : Related to vulnerabilities that could be exploited by malicious actors

• Design : Architectural shortcomings and design inefficiencies

• Correctness : Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 0

Kyber Network - KyberSwap Elastic - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

6 Resolved Findings
Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 3

• Code CorrectedBypassing Antisnipping Protection

• Code CorrectedFunction Pool.burnRTokens Return Values

• Code CorrectedLocked Funds Remain Locked After vestingPeriod Update

Medium -Severity Findings 2

• Code CorrectedBroken/Partial ERC165 Support

• Code CorrectedFunction Pool.unlockPool Reentrancy

Low -Severity Findings 10

• Code CorrectedFunction ERC721Permit.permit Payable

• Specification ChangedFunction Pool.burnRTokens Natspec

• Code CorrectedFunction Pool.burnRTokens Potential Reentrancy

• Code CorrectedFunction SwapMath.calcFinalPrice Rounding Down

• Code CorrectedGas Inefficiency in insert()

• Code CorrectedPool swap Max Tick Distance

• Code CorrectedPosition Manager Storage Access

• Code CorrectedSolidity Compiler Pragma

• Specification ChangedSpecification Mismatches in SwapMath

• Specification Changedflash() Sends Fees to feeTo

6.1 Bypassing Antisnipping Protection
Security High Version 1 Code Corrected

The AntisnippingManager implements logic to protect against so-called liquidity-snipping (Just-in-Time
Liquidity) attacks to prevent attackers from adding much liquidity before a swap and removing it right
afterwards to collect most of the fees while not being exposed to LP risks.

Kyber Network removes the economic incentive of such an attack by locking fees for vestingPeriod
which means an immediate withdrawal of liquidity should set the collected fees to zero.

Note, that AntiSnipAttack protection only comes in play if feeGrowthInsideLast of the position
manager and the feeGrowthInsideLast of the position are not equal:

if (feeGrowthInsideLast != pos.feeGrowthInsideLast) {

 (additionalRTokenOwed, feesBurnable) = AntiSnipAttack.update(

Kyber Network - KyberSwap Elastic - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

 ...
}

Also, feesBurnable can only be non-zero if liquidity is removed:

if (isAddLiquidity) {

} else if (_self.feesLocked > 0) {
 feesBurnable = (_self.feesLocked * liquidityDelta) / uint256(currentLiquidity);
 _self.feesLocked -= feesBurnable;
}

Thus, the following attack is possible:

1. Attacker sees a huge swap and mints an enormous position

2. Swap occurs.

3. An attacker adds a small amount of liquidity. The position's feeGrowthInsideLast is updated.
However, rTokens are now locked.

4. An attacker removes all his liquidity which does not enter the AntiSnipAttack code since there was
no fee growth. Liquidity is withdrawn and rTokens remain locked.

5. After vestingPeriod has passed the attacker can withdraw the newly generated fees.

Even though the attacker does not immediately withdraw the fees, his liquidity came and went
immediately while generating a temporarily locked profit for the attacker.

Code corrected:

In version 3 of the code, the Antisnipping protection logic is triggered on every call of removeLiquidity
function.

6.2 Function Pool.burnRTokens Return Values
Correctness High Version 1 Code Corrected

Function burnRTokens of Pool contract has following definition:

/// @return qty0 token0 quantity sent to the caller for burnt reinvestment tokens
/// @return qty1 token1 quantity sent to the caller for burnt reinvestment tokens
function burnRTokens(uint256 qty, bool isLogicalBurn)
 external
 returns (uint256 qty0, uint256 qty1);

However the qty0 and qty1 value are not assigned in the implementation of this function. Thus 0 values
will be returned instead.

The position managers rely on these return values as they implement slippage protection as follows:

(amount0, amount1) = pool.burnRTokens(rTokenQty, false);
require(amount0 >= params.amount0Min && amount1 >= params.amount1Min, 'Low return amounts');

Ultimately, the transaction will revert if amount0Min > 0 && amount1Min >0 holds.

Kyber Network - KyberSwap Elastic - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

Code corrected:

The values are now properly assigned to the return variables.

6.3 Locked Funds Remain Locked After
vestingPeriod Update
Correctness High Version 1 Code Corrected

The AntiSnipAttackPositionManager prevents profitable snipping attacks by locking rewards for a certain
amount of time. The fees locked in a position with tokenId are stored in
AntiSnipAttackPositionManager:antiSnipAttack[tokenId].feesLocked. However, if
vestingPeriod is set to zero, feesLocked remains locked.

Assume the following scenario:

1. vestingPeriod = 1 day

2. User mints a position.

3. After 12 hours, the User adds liquidity to a position. Assume that 1 rToken in fees has been earned
totally while half of it is locked.

4. vestingPeriod set to 0.

5. Whenever the user performs a position-modifying action, the following code gets executed.

if (vestingPeriod == 0) return (feesSinceLastAction, 0);

6. Only the newly accumulated fees become claimable while the locked fees remain locked. Hence,
0.5 rTokens will be unclaimable.

Thus, changes to the vestingPeriod can potentially allow users withdrawal of more fees, than it was
intended. Current AntiSnipAttackPositionManager and AntiSnipAttack library rely on constant
vestingPeriod. To conclude, the AntiSnipAttack library should be aware that the vesting period for fees
could change.

Code corrected:

If vestingPeriod is zero and fees are still locked, feesLocked is added to the claimable fees and
feesLocked is set to 0.

6.4 Broken/Partial ERC165 Support
Design Medium Version 1 Code Corrected

The ERC-721 specifies that the ERC-165 interface must be implemented which defines a standard
method to publish and detect what interfaces a smart contract implements.

function supportsInterface(bytes4 interfaceID) external view returns (bool);

The more derived ERC-721 contracts of Kyber Network do not overwrite this function. Hence, querying
the support of the additionally implemented interfaces through supportsInterface() will return
false.

Kyber Network - KyberSwap Elastic - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

Code corrected:

The issue has been addressed. Function supportsInterface will return true for the following
interfaces.

• ERC721Enumerable

• IERC721Permit

Thus, they are considered as supported by the contract according to ERC-165.

6.5 Function Pool.unlockPool Reentrancy
Security Medium Version 1 Code Corrected

Pools are created in a locked state and need to be unlocked first. The unlockPool function first
removes the lock and then perform the mintCallback. The _initPoolStorage is called after the
callback. This is an important function that finalizes the setup of storage for the pool. This
mintCallback after unlock and before _initPoolStorage can be misused by the malicious parties,
since all pool functions will be available during the call. Attacker can potentially misconfigure or abuse
intermediate state inconsistency for its own profit. In addition, the mintCallback is usually performed to
whitelisted position managers, while in this case any contract can be called.

Code corrected:

The callback has been removed for unlocking pools. Now, funds have to be transferred to the pool before
unlocking the pool.

6.6 Function ERC721Permit.permit Payable
Design Low Version 1 Code Corrected

The function permit has a payable modifier while abstract class ERC721Permit does not have any
other functions that can withdraw funds. The BasePositionManager that inherits this class has a separate
receive function for ether transfers. Hence, the payable modifier could be removed from permit.

Code corrected:

The payable modifier was removed from the permit function.

6.7 Function Pool.burnRTokens Natspec
Design Low Version 1 Specification Changed

The burnRTokens does not describe the bool isLogicalBurn argument with a @param tag. This
argument greatly influences the result of burn and thus should be described.

Specification changed:

Kyber Network - KyberSwap Elastic - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

isLogicalBurn is now documented.

6.8 Function Pool.burnRTokens Potential
Reentrancy
Design Low Version 1 Code Corrected

Certain ERC20 tokens perform callback on token transfers. For example, ERC777. Performing _burn
after transfers is then can be recognized as a reentrancy pattern. While the burnRTokens and other
Pool contract functions have reentrancy lock protection, there is possibility, that external contracts called
during the transfer callback, might misinterpret the State of the Pool contract. For example, the
reinvestL / totalSupply ratio will be off during this callback.

if (tokenQty > 0) token0.safeTransfer(msg.sender, tokenQty);
tokenQty = QtyDeltaMath.getQty1FromBurnRTokens(sqrtP, deltaL);
if (tokenQty > 0) token1.safeTransfer(msg.sender, tokenQty);

_burn(msg.sender, _qty);

Code corrected:

The transfers have been moved to the very end of the function.

6.9 Function SwapMath.calcFinalPrice
Rounding Down
Correctness Low Version 1 Code Corrected

The calcFinalPrice calculates the final price for swaps, when the used amount hits the specified
amount limit. Depending on the starting price and direction of price movement during the swap, the price
needs to be rounded either up or down. If isToken0 == false && isExactInput == true, sqrtP
increases and thus price needs to be rounded down, in order not to 'overshoot' the target price.

But the tmp component of the final price is computed with rounding up division operator:

uint256 tmp = FullMath.mulDivCeiling(absDelta, C.TWO_POW_96, currentSqrtP);
return FullMath.mulDivFloor(liquidity + tmp, currentSqrtP, liquidity + deltaL);

Thus the returned value with certain chance will be more than intended.

Code corrected:

The code has been adjusted such that now division is rounding down.

6.10 Gas Inefficiency in insert()
Design Low Version 1 Code Corrected

Kyber Network - KyberSwap Elastic - ChainSecurity - © Decentralized Security AG 16

https://docs.openzeppelin.com/contracts/3.x/erc777
https://chainsecurity.com

Insertions into the linked list through LinkedList:insert() occur only in internal function
PoolTicksState:_updateTickList. In insert() the following storage read occurs:

However, that value corresponds to the last nextTick in _updateTickList. Thus, storage reads
could be reduced by passing an additional argument to insert.

Code corrected:

insert now takes nextTick as an additional argument, reducing the number of storage reads.

6.11 Pool swap Max Tick Distance
Correctness Low Version 1 Code Corrected

In the main loop of the swap function, to ensure that the tickOutside value is interpreted correctly the
currentTick variable needs to be adjusted if the swap moves the price down:

swapData.currentTick = willUpTick ? tempNextTick : tempNextTick - 1;

On the next iteration of the loop, the new target tick distance should not exceed the
MAX_TICK_DISTANCE == 487:

int24 tempNextTick = swapData.nextTick;
if (willUpTick && tempNextTick > C.MAX_TICK_DISTANCE + swapData.currentTick) {
 tempNextTick = swapData.currentTick + C.MAX_TICK_DISTANCE;
} else if (!willUpTick && tempNextTick < swapData.currentTick - C.MAX_TICK_DISTANCE) {
 tempNextTick = swapData.currentTick - C.MAX_TICK_DISTANCE;
}

If willUpTick == false and tempNextTick - 1, then the tempNextTick will have at most 488
ticks between the matching tick for sqrtP. Thus, desired ∆x∗fee / x < 0.0005 ratio can be violated.

Code corrected:

The MAX_TICK_DISTANCE was changed to 480. This way the desired ∆x∗fee / x < 0.0005 ratio
will be preserved.

6.12 Position Manager Storage Access
Design Low Version 1 Code Corrected

AntiSnipAttackPositionManager and BasePositionManager often read same fields inside pos storage
variable multiple times during the function execution. Since this struct type variable is defined as a
storage one, this will lead to repeated reads from the same work. More efficient approach would be
utilization of in memory variables.

Position storage pos = _positions[params.tokenId];

Code corrected:

Kyber Network - KyberSwap Elastic - ChainSecurity - © Decentralized Security AG 17

https://chainsecurity.com

In version 3 of the code the gas is saved by utilizing memory variable for data access during the
execution.

6.13 Solidity Compiler Pragma
Design Low Version 1 Code Corrected

The smart contracts inside the repository utilize different compiler pragmas:

• pragma solidity >=0.5.0;

• pragma solidity >=0.8.0;

• pragma solidity ^0.8.0;

• pragma solidity >=0.8.0 <0.9.0;

• pragma solidity 0.8.9;

Contracts should be deployed with the same compiler version and flags that they have been tested with
thoroughly. Locking the pragma helps to ensure that contracts do not accidentally get deployed using, for
example, an outdated compiler version that might introduce bugs that affect the contract system
negatively. In addition, fixed pragma ensures that the testing and deployment performed on code that
was compiled by the same compiler version.

Code corrected:

Core and periphery contracts use now pragma solidity 0.8.9 while libraries use >=0.8.0.

6.14 Specification Mismatches in SwapMath
Correctness Low Version 1 Specification Changed

Some mismatches between the specifications and code occur in the SwapMath library. Some examples
are:

• The Core Library Swap Math documentation of calcReachAmount() distinguishes four cases.
However, case 1 & 4 and case 2 & 3 are identical. That mismatches the technical documentation of
the swap and the implementation.

• The technical documentation does not specify that the absolute value of usedAmount (delta x tmp)
is to be used for the calculation of deltaL.

• The technical documentation differs in the mathematical formula for calculating returnedAmount.

Specification changed:

The specification now better reflects the implementation.

6.15 flash() Sends Fees to feeTo
Correctness Low Version 1 Specification Changed

The natspec documentation of flash() in IPoolActions specifies the following:

Kyber Network - KyberSwap Elastic - ChainSecurity - © Decentralized Security AG 18

https://chainsecurity.com

/// @dev Fees collected are distributed to all rToken holders
/// since no rTokens are minted from it

However, the fees are transferred to the feeTo address stored in the Factory contract.

Specification changed:

The natspec specification has changed to specify that feeTo receives the fees from the flash loan.

Kyber Network - KyberSwap Elastic - ChainSecurity - © Decentralized Security AG 19

https://chainsecurity.com

7 Notes
We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

7.1 Pools for Tokens With Multiple Addresses
Note Version 1

The factory creates pools for two token address. It reverts if either the two addresses are identical or the
pool has been already initialized for the token pair and the fee. However, some tokens (e.g. TUSD) have
two addresses for the token. That allows for the creation of TUSD / TUSD pools, and multiple TUSD /
other token pools with the same fee.

Kyber Network - KyberSwap Elastic - ChainSecurity - © Decentralized Security AG 20

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.2.1 Factory
	2.2.2 Pool
	2.2.3 Router
	2.2.4 AntiSnipAttackPositionManager
	2.2.5 Assumptions

	3 Limitations and use of report
	4 Terminology
	5 Findings
	6 Resolved Findings
	6.1 Bypassing Antisnipping Protection
	6.2 Function Pool.burnRTokens Return Values
	6.3 Locked Funds Remain Locked After vestingPeriod Update
	6.4 Broken/Partial ERC165 Support
	6.5 Function Pool.unlockPool Reentrancy
	6.6 Function ERC721Permit.permit Payable
	6.7 Function Pool.burnRTokens Natspec
	6.8 Function Pool.burnRTokens Potential Reentrancy
	6.9 Function SwapMath.calcFinalPrice Rounding Down
	6.10 Gas Inefficiency in insert()
	6.11 Pool swap Max Tick Distance
	6.12 Position Manager Storage Access
	6.13 Solidity Compiler Pragma
	6.14 Specification Mismatches in SwapMath
	6.15 flash() Sends Fees to feeTo

	7 Notes
	7.1 Pools for Tokens With Multiple Addresses

