

PUBLIC

Code Assessment

of the oYfi

Smart Contracts

March 7, 2023

Produced for

by

Contents

1 Executive Summary 3

2 Assessment Overview 5

3 Limitations and use of report 8

4 Terminology 9

5 Findings 10

6 Resolved Findings 11

7 Informational 13

8 Notes 15

Yearn - oYfi - ChainSecurity - © Decentralized Security AG 2

https://chainsecurity.com

1 Executive Summary
Dear Yearn Team,

Thank you for trusting us to help Yearn with this security audit. Our executive summary provides an
overview of subjects covered in our audit of the latest reviewed contracts of oYfi according to Scope to
support you in forming an opinion on their security risks.

Yearn implements an incentive mechanism for users to hold the yvTokens. In particular, users can stake
these tokens and mint Gauge tokens (ygTokens). With these tokens users can claim Option-Yfi (oYFI)
which allows them to buy YFI tokens on discount.

The most critical subjects covered in our audit are rewards accumulation, the minting and redeeming of
Gauge tokens, the calculation of the YFI discounted price and, the precision of the calculations and the
access control. The security of all aforementioned subjects is high as only low to medium severity issues
were uncovered. All the issues have been resolved in the second iteration of the codebase.

The general subjects covered are upgradeability, documentation, testing. The documentation provided to
us was limited. The security regarding the rest of subjects is high.

In summary, we find that the codebase provides a high level of security.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

Yearn - oYfi - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings
Below we provide a brief numerical overview of the findings and how they have been addressed.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 2

• Code Corrected 2

Low -Severity Findings 2

• Code Corrected 2

Yearn - oYfi - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

2 Assessment Overview
In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope
The assessment was performed on the source code files inside the oYfi repository based on the
documentation files. The table below indicates the code versions relevant to this report and when they
were received.

V
Date Commit Hash Note

1
13 February 2023 0f2c0c64b396bbf467559d6e23aa8846aa81a10

c
Initial Version

2
23 February 2023 59b37862b57cd731359be80d522fda3c279b4e

8a
Version with fixes

3
6 March 2023 b5ae35e41dd584e18838202a0146a0eab729c

02e
Removed require statement

For the solidity smart contracts, the compiler version 0.8.15 was chosen.

In scope are considered the contracts in the directory contracts modified by the commit under review
namely:

• BaseGauge.sol

• Gauge.sol

• GaugeFactory.sol

• OYfi.sol

• Options.vy

• Registry.sol

Moreover, OYfiRewardPool.sol was audited only concerning its differences to the RewardPool.sol
which was audited in a different review.

2.1.1 Excluded from scope
Excluded from scope are all the contracts not explicitely mentioned in the scope. More specifically,
OYfiRewardPool.sol is considered to be functionally correct. All open-zeppelin libraries used are
also considered to work correctly.Furthermore, all the contracts with which the contracts under scope
interact are considered to work as intendend. Finally, attacks by authorized users were not considered in
this review as this roles are considered trusted by the system and expected to never act maliciously.

2.2 System Overview
Version 1This system overview describes the initially received version () of the contracts as defined in the

Assessment Overview.

Yearn - oYfi - ChainSecurity - © Decentralized Security AG 5

https://chainsecurity.com

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

Yearn offers an implementation of the option-YFI (oYFI) token. Users earn oYFI when they hold Gauge
tokens which they can later redeem to get YFI tokens at a discount. Gauge tokens can be minted by
depositing yearn vault shares. For example, a user who stakes DAI on Yearn gets vyDAI Vault tokens in
return. They can be deposited into Gauge with a mint of yGvyDAI in return. Moreover, they can further
boost their rewards by holding veYFI Vested Escrow tokens.

2.2.1 Gauge Token
It is a standard ERC20 token and a vault that implements the EIP4626 standard. Users deposit an
amount of their shares and mint in return the same amount of the respective Gauge token.

Boosted Balance:

Users can boost their rewards by owning an amount of veYFI. Their boosted balance is calculated as
follows:

min(Gauge. balanceOf(user),
9
10 * Gauge. totalSupply * veYFI. balanceOf(user)

veYFI. totalSupply +
Gauge. balanceOf(user)

10)
Intuitively, a user will get a higher reward if they hold the same share of all available veYFI tokens as
their share of all Gauge tokens.

Reward Queueing:

Any user can call queueNewRewards function and deposit the reward oYFI tokens for distribution in the
distribution period. Each distribution period is defined by owner-controlled duration variable. The new
period starts if the previous period has ended or if the new queued reward is 1.2 times more than the
number of rewards so far distributed. If a user calls queueNewRewards with a small amount, then the
current reward period is not affected and the amount is queued to be used later together with a bigger
amount. When a new period starts, all the queued rewards are used for distribution, however, the reward
period does not start automatically. At least one call to queueNewRewards need to happen for the new
period to start. A change in the period duration (setDuration) stops the old period and distributes the
remaining rewards in a new period, with the new duration.

Reward Calculation:

Rewards in a period are distributed linearly in time among all the accounts based on their boosted
balances. Part of the reward calculation is a penalty calculation. The penalty is the difference between
the user's boosted balance, and the maximum possible boosted balance for the user with the given
Gauge balance value. The penalty is transferred to the oYFI reward pool.

Entry points:

Users can interact with the contract from the following entry points:

• deposit/mint: any user can deposit an amount of the underlying token and mint the same
amount of gauge tokens for themselves or a specified receiver. Note that since vault shares and
gauge tokens are always pegged in a 1-to-1 relation, mint and deposit implement the same
functionality.

• withdraw/redeem: any user can redeem their gauge tokens or a pre-specified amount of
another user in exchange for the underlying asset. This will lead to burning the respective
amount of gauge tokens. Users can optionally choose whether they want to claim their accrued
rewards. Again withdraw and redeem implement the same functionality.

• getReward: any user can call this on behalf of any user. It sends the accrued rewards to the
specified recipient of the user who earned the rewards. It also updates the reward for the user.

• kick: it updates the boosted balance of a batch of users. Any user can call this.

Yearn - oYfi - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

All the aforementioned calls, make a call to _updateReward which essentially checkpoints the accrued
rewards up to this point.

2.2.2 Gauge Factory
This is a proxy factory, that deploys Gauge proxy contracts, that use some already deployed Gauge
contracts as their logic.

2.2.3 oYFI
It is a standard ERC20 token. The token supply can only be minted by its owner. According to
specification, the owner in the current architecture is a fully trusted Yearn multisig. Any user can burn any
amount of their own oYFI tokens or up to a specified amount of another user who has allowed them to
do so.

2.2.4 Options contract
Users can burn oYFI tokens and get the same amount YFI tokens using the Options contract. For that,
they need to call exercise function and send some ETH along with the call as a message value. The
amount of ETH needed is determined by the discount * YFI/ETH price formula. The price of YFI
is considered to be the maximum between the YFI/ETH price the curve pool price oracle reports and the
YFI/ETH price of the Chainlink price oracle. The discount on that price depends on the amount of YFI
locked on the veYFI contract. The greater the amount locked, the smaller the discount. The discount is
calculated by the following formula:

discount = c/(1 + a * ek(x − 1)), where
c = 1,

a = 9.9999,
k = 4.6969

The x is the proportion of locked YFI tokens, values are between 0 and 1.

The Options contract is not upgradeable. In case an update is needed, the owner of the contract will kill it
and transfer its assets to another one.

2.2.5 oYFI reward pool
Users can claim oYFI rewards from the oYfiRewardPool contract, based on their historic veYFI balance.
This contract implements the same functionality as RewardPool contract, with disabled relock
functionality.

2.2.6 Roles and Trust Model
In the system in scope, the following roles are defined:

• The oYFI owner: they can mint oYFI tokens. It is assumed that the owner is a multisig
controlled by Yearn. It is fully trusted.

• The owner of each Gauge token: they are allowed to update the duration of a period and sweep
the contract from tokens that we were accidentally sent there. oYFI and YFI tokens are
protected and cannot be swept.

• The owner of the Option contract. They can kill the contract. Fully trusted.

All the aforementioned roles are assumed to never act maliciously or against the interest of the users of
the system.

Yearn - oYfi - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

3 Limitations and use of report
Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

Yearn - oYfi - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

4 Terminology
For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

• Likelihood represents the likelihood of a finding to be triggered or exploited in practice

• Impact specifies the technical and business-related consequences of a finding

• Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment
procedure.

Likelihood Impact
High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

Yearn - oYfi - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

5 Findings
In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

• Design : Architectural shortcomings and design inefficiencies

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 0

Yearn - oYfi - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

6 Resolved Findings
Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 2

• Code CorrectedMissing Sanity Check of Chainlink Oracle Price

• Code CorrectedNot Initialized Variables

Low -Severity Findings 2

• Code CorrectedDivisions Before Multiplications

• Code CorrectedSweeping Non-ERC20-Compatible Tokens

6.1 Missing Sanity Check of Chainlink Oracle
Price
Design Medium Version 1 Code Corrected

Options smart contract calculates the required ETH price by querying a YFi/ETH ChainLink oracle and
the curve oracle. Apart from the price of the YFi tokens, the oracle returns information about the point in
time when its price was updated. However, this information is ignored by the current implementation. The
stale prices might be used for estimations.

Code corrected:

A check that the update time of the price oracle complies with the ChainLink heartbeat parameter for the
YFI/ETH pool (24 hours or 86400 seconds) was added.

6.2 Not Initialized Variables
Design Medium Version 1 Code Corrected

On multiple occasions, some state variables are used which are never set and there are no functions that
can update them. In particular:

• In Options.exercise, ETH is sent to self.payee. However, this variable is never set.
Hence, ETH will be sent to 0x0 address.

• In Gauge._getReward, the recipients mapping is read. However, this mapping is never
written, thus the recipient[account] will always be 0x0. This means, that no other recipient
than the owner of the Gauge tokens can receive the rewards.

Yearn - oYfi - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

Code corrected:

• The Options.payee is set to the owner in the constructor. In addition, set_payee function,
restricted to the owner, was added. It can change this field.

• The Gauge.setRecipient function was added. It allows users to set the recipients mapping.

6.3 Divisions Before Multiplications
Design Low Version 1 Code Corrected

In the implementation in the scope, there are multiple instances where divisions happen before
multiplications. Such sequences of operations yield less precise results. In particular, the following
expressions can be rearranged:

• In Options._eth_required,

amount * eth_per_yfi / PRICE_DENOMINATOR * discount / DISCOUNT_NUMERATOR

• In Gauge._boostedBalanceOf,

((_realBalance * BOOSTING_FACTOR) +
 (((totalSupply() * IVotingYFI(VEYFI).balanceOf(_account)) /
 veTotalSupply) *
 (BOOST_DENOMINATOR - BOOSTING_FACTOR))) /
 BOOST_DENOMINATOR,

Code partially corrected:

• The Options._eth_required does the multiplications first and only then the divisions.

• The Gauge._boostedBalanceOf is left unchanged. This numerical imprecision won't affect the
functionality of the contract. No "dust" will be accumulated due to this because the penalty is defined
in a way, that will sweep the leftover dust.

6.4 Sweeping Non-ERC20-Compatible Tokens
Design Low Version 1 Code Corrected

Options.sweep allows any user to transfer any ERC20 compatible tokens owned by the contract to its
owner. However, this call will fail for tokens that are not compliant with the ERC20 standard. The most
prominent example is the USDT. USDT's transfer does not return any value in contrast to the ERC20
standard. This means that transfer call will fail. In Solidity, this issue is tackled with the
safeTransfer call (see Openzeppelin's safeERC20).

Code corrected:

The default_return_value=True parameter was added in the Options.sweep token transfer
call, that enables safeTransfer functionality in Vyper smart contracts.

Yearn - oYfi - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

7 Informational
We utilize this section to point out informational findings that are less severe than issues. These
informational issues allow us to point out more theoretical findings. Their explanation hopefully improves
the overall understanding of the project's security. Furthermore, we point out findings which are unrelated
to security.

7.1 EIP-4626 Event Field Names
Informational Version 1

Event Deposit and event Withdrawal in IERC4626 are defined with address indexed caller.
According to the https://eips.ethereum.org/EIPS/eip-4626#events, these fields should be named as
sender.

7.2 Full YFI Locked Discount Reverts
Informational Version 1

In the case of the quite improbable event, when the total supply of Yfi is locked in veYfi, the discount
cannot be computed.

DISCOUNT_TABLE[total_locked * DISCOUNT_GRANULARITY / total_supply]

The DISCOUNT_TABLE has 500 elements. However, the max index is 499. This index access during the
computation will revert, if total_locked == total_supply, because the element with index 500 is
not present in the DISCOUNT_TABLE.

7.3 Incorrect Documentation
Informational Version 1

In OYfiRewardPool.burn, the documentation reads as follows:

@notice Receive YFI into the contract and trigger a token checkpoint

The documentation is incorrect as OYFI is transferred instead of YFI.

7.4 Missing Indices in Events
Informational Version 1

For some events, some arguments are not indexed even if this would make sense. In particular:

• In Options.Sweep, the token argument could be indexed.

• In Gauge.BoostedBalanceUpdated, the account argument could be indexed.

Yearn - oYfi - ChainSecurity - © Decentralized Security AG 13

https://eips.ethereum.org/EIPS/eip-4626#events
https://chainsecurity.com

7.5 Non-informative Error Message
Informational Version 1

BaseGauge.queueNewRewards checks whether the _amount argument is non 0. Should this check
fail, the non-informative ==0 message will be returned. Note that Solidity 0.8 allows for error values
instead of just strings to be returned upon check failure.

7.6 Redundant Function Modifiers
Informational Version 1

Multiple functions are defined using a public modifier, while they are not called within the contract. These
functions could be set as external instead:

• Gauge.convertToShares

• Gauge.convertToAssets

• Gauge.maxDeposit

• Gauge.previewDeposit

• Gauge.maxMint

• Gauge.previewMint

• Gauge.kick

Solidity compiler needs to perform extra routines for public functions, which can result in higher gas
usage.

Yearn - oYfi - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

8 Notes
We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

8.1 Gauge Assumed Decimals
Note Version 1

The Gauge contract uses default 18 decimals. However, the asset can have a different number of
decimals. While the Yearn vault tokens have 18 decimals, this might not be true for any asset that might
be used in Gauge. If an asset with a different number of decimals is introduced, the respective Gauge will
misbehave.

8.2 Manipulation of Curve Oracle
Note Version 1

Options calculates the price of YFI/ETH by querying the price oracle of the respective Curve-pool.
Curve uses a time weighted price oracle or (TWAP-oracle). TWAP oracles have been shown to be
manipulatable to an extent. Users should be aware that the system in scope does not perform any further
sanity checks on the correctness of the reported price.

Yearn - oYfi - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.2.1 Gauge Token
	2.2.2 Gauge Factory
	2.2.3 oYFI
	2.2.4 Options contract
	2.2.5 oYFI reward pool
	2.2.6 Roles and Trust Model

	3 Limitations and use of report
	4 Terminology
	5 Findings
	6 Resolved Findings
	6.1 Missing Sanity Check of Chainlink Oracle Price
	6.2 Not Initialized Variables
	6.3 Divisions Before Multiplications
	6.4 Sweeping Non-ERC20-Compatible Tokens

	7 Informational
	7.1 EIP-4626 Event Field Names
	7.2 Full YFI Locked Discount Reverts
	7.3 Incorrect Documentation
	7.4 Missing Indices in Events
	7.5 Non-informative Error Message
	7.6 Redundant Function Modifiers

	8 Notes
	8.1 Gauge Assumed Decimals
	8.2 Manipulation of Curve Oracle

