

PUBLIC

Code Assessment

of the Lido

Smart Contracts

August 23, 2022

Produced for

by

Contents

1 Executive Summary 3

2 Assessment Overview 5

3 Limitations and use of report 9

4 Terminology 10

5 Findings 11

6 Notes 17

Lido - Lido - ChainSecurity - © Decentralized Security AG 2

https://chainsecurity.com

1 Executive Summary
Dear Lido Team,

Thank you for trusting us to help Lido with this security audit. Our executive summary provides an
overview of subjects covered in our audit of the latest reviewed contracts of Lido according to Scope to
support you in forming an opinion on their security risks.

Lido implements a staking protocol that allows users to stake their ETH while maintaining liquidity. In
addition, it allows users to receive rewards for their staked ETH without running validator nodes. The
inverse is true for node operators - they can run validator nodes and receive rewards without having to
supply ETH themselves.

The most critical subjects covered in our audit are functional correctness, the trust model, and security of
user funds. Security regarding all the aforementioned subjects is high.

The general subjects covered are gas efficiency and access control. Some improvements to gas
efficiency can be made.

The documentation provided was detailed and helpful in understanding the complexity of the system.

In summary, we find that the codebase provides a high level of security.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

Lido - Lido - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings
Below we provide a brief numerical overview of the findings and how they have been addressed.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 9

• Risk Accepted 4

• Acknowledged 5

Lido - Lido - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

2 Assessment Overview
In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope
The assessment was performed on the source code files inside the Lido repository based on the
documentation files. The table below indicates the code versions relevant to this report and when they
were received.

V Date Commit Hash Note

1 19 May 2022 08436ce13d67501fa723169c1dc69fe47b90cde4 Initial Version

The following files were in scope. Various compiler versions were used for different contracts.

Contracts using compiler version 0.4.24:

• MemUtils.sol

• Pausable.sol

• StakeLimitUtils.sol

• NodeOperatorsRegistry.sol

• LidoOracle.sol

• ReportUtils.sol

• Lido.sol

• StETH.sol

Contracts using compiler version 0.6.12:

• WstETH.sol

Contracts using compiler version 0.8.9:

• CompositePostRebaseBeaconReceiver.sol

• DepositSecurityModule.sol

• ECDSA.sol

• LidoExecutionLayerRewardsVault.sol

• OrderedCallbacksArray.sol

• SelfOwnedStETHBurner.sol

The version 0.4.24 was chosen in order to keep compatibility with the Aragon DAO framework.

2.1.1 Excluded from scope
All libraries and contracts imported and used in the contracts, for example Aragon and BytesLib, are not
part of this review. Only the contracts listed above are in scope.

Lido - Lido - ChainSecurity - © Decentralized Security AG 5

https://chainsecurity.com

2.2 System Overview
Version 1This system overview describes the initially received version () of the contracts as defined in the

Assessment Overview.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

As ETHEREUM is implementing a new consensus layer based on Proof-of-stake (Beacon Chain), users
are able to stake their ETH in batches of 32 and run validators to receive staking rewards. The staked
tokens are locked in a deposit contract and cannot be transferred. At the time of this writing, the tokens
also cannot be withdrawn.

Lido offers a staking protocol that allows users to stake their ETH on ETHEREUM's Beacon Chain while
maintaining liquidity. It allows any amount of ETH to be sent to the protocol in exchange for staked ETH
(stETH) tokens which can be freely traded while they accrue interest. Furthermore, running and
maintaining validator nodes is delegated to trusted third party node operators, allowing users to stake
their ETH with no effort.

Staked ETH tokens accrue value over time using a rebase mechanism. In periodic updates, rewards
gained by the validators are captured by external oracles and published to the Lido smart contracts,
increasing all users' balances equally. Currently, only the main staking rewards are accrued but as soon
as ETHEREUM merges the execution layer with the beacon chain, additional rewards are collected due
to transaction priority fees and Miner Extractable Value (MEV).

Due to network and node operator fees, as well as the fact that rewards are socialized between all
participants and there is a waiting time between Beacon chain deposits and completely running validator
nodes, rewards are slightly reduced in comparison to individual staking. However, once introduced,
execution layer rewards will be reinvested and thus have a compounding effect which is not easily
possible in individual staking.

As withdrawing from the ETHEREUM deposit contract is disabled until the Shanghai upgrade, which is
planned to follow the Merge, Lido does not support exchanging stETH back to ETH at the time of this
writing.

2.2.1 StETH
The StETH contract represents an ERC20 token with rebase mechanism. User balances are internally
represented as shares and their actual balances are a product of the total shares and the amount of
ETH per share currently held by active validators, pending validators, and buffered in the Lido contract.
As the amount of ETH per share increases due to rewards, the user balances also increase
proportionally.

2.2.2 WstETH
To mitigate problems with smart contracts that cannot handle rebasing ERC20 tokens, Lido offers another
token contract that represents user balances in constant values. stETH can be sent to the WstETH.wrap
function in order to utilize this behavior. An unwrap function allows to easily convert the tokens back to
stETH.

While stETH value remains constant, wstETH value increases over time relative to the stETH rebase
amounts.

2.2.3 Lido
Lido is the main contract of the protocol. It extends the abstract StETH contract and features the
following functions:

Lido - Lido - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

• submit allows users to deposit their ETH and receive stETH in return. The deposits are buffered
and added to the ETHEREUM deposit contract in bulk by the depositBufferedEther function
using signing keys that have been previously submitted to the NodeOperatorsRegistry.

• depositBufferedEther deposits the buffered ETH supplied by users to the ETHEREUM deposit
contract. It is called by the DepositSecurityModule contract which enables certain security
guarantees.

• handleOracleReport updates user balances by periodically receiving reports from the
LidoOracle. During execution, the function also withdraws ETH from the
LidoExecutionLayerRewardsVault to which node operators are sending the execution layer
rewards.

2.2.4 NodeOperatorsRegistry
Lido requires external node operators that run and maintain the validator nodes. The
NodeOperatorsRegistry contains these operators along with signing keys that are used for deposits
in the ETHEREUM deposit contract. For each 32 ETH deposit, one signing key by one operator as well
as the protocol's withdrawal key is used. The operator can then set up a validator with the signing key
and start validating as soon as the key gets approved.

Signing keys can be added and removed by the DAO as well as node operators themselves. For each
operator, a total of the submitted signing keys and the already used signing keys is maintained in the
ledger. All operators that still have signing keys left are equally matched to deposits during
Lido.depositBufferedEther calls.

2.2.5 LidoOracle
LidoOracle receives reports about the state of all validators associated with Lido. External oracle
providers call the function reportBeacon periodically (currently approx. once per day) to inform the
protocol about the number of validators as well as the total validator balances. Once a quorum is reached
by different oracle providers agreeing on the same state, the report is sent to Lido
(handleOracleReport) and to some other listeners (currently, only SelfOwnedStETHBurner).

2.2.6 DepositSecurityModule
The DepositSecurityModule is used to counter some attack vectors of the deposit mechanism.
Since the current Beacon Chain specification allows to top up a position with another deposit even when
the withdrawal key is different, special measures have to be taken so that nobody can deposit with the
same public key but a different withdrawal key before the actual Lido deposit is executed.

DepositSecurityModule.depositBufferedEther calls Lido.depositBufferedEther after a
committee has verified the keys about to be used for depositing have not been used for a malicious
pre-deposit. The function is then called with the current Merkle-Root of the ETHEREUM deposit contract
(and some other values) to make sure the transaction reverts if state changes happen before the actual
on-chain execution.

2.2.7 LidoExecutionLayerRewardsVault
All execution layer rewards (transaction priority fees and MEV) are sent to the
LidoExecutionLayerRewardsVault by node operators. When oracle reports are sent to Lido, the
rewards are reinvested (up to a certain limit per call) into the ETHEREUM deposit contract.

Lido - Lido - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

2.2.8 SelfOwnedStETHBurner
The DAO can send stETH to the SelfOwnedStETHBurner to distribute value among all holders of
stETH by burning the sent tokens. The contract allows to send stETH either for covering losses or for
other reasons. The difference is just in the accounting: Both functions requestBurnMyStETHForCover
and requestBurnMyStETH stake stETH in the contract and every time the oracle report is pushed by
the LidoOracle, the contract burns all stETH up to a certain threshold.

2.2.9 Roles & Trust Model
Lido relies on certain external trusted entities:

• Oracles submit reports of the current state of the validators on the Beacon Chain.

• Node operators submit public signing keys to be used for deposits and create validator nodes
running with these signing keys.

• Deposit Security Committee verifies the state of the signing keys and the deposit contract to make
sure no malicious pre-deposits have been made.

Oracles and the Deposit Security Committee each consist of multiple trusted entities of which the majority
has to agree on certain states in order for state changing actions to be performed. Node operators are
approved by the DAO and have to be completely trusted.

Other state changing functions (e.g., parameter changes) are controlled by the DAO.

Lido - Lido - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

3 Limitations and use of report
Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

Lido - Lido - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

4 Terminology
For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

• Likelihood represents the likelihood of a finding to be triggered or exploited in practice

• Impact specifies the technical and business-related consequences of a finding

• Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment
procedure.

Likelihood Impact
High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

Lido - Lido - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

5 Findings
In this section, we describe our findings. The findings are split into these different categories:

• Design : Architectural shortcomings and design inefficiencies

• Trust : Violations to the least privilege principle

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 9

• AcknowledgedGas Inefficiencies

• Risk AcceptedInconsistent Event Order

• AcknowledgedLidoOracle Initialized With Wrong Epoch

• Risk AcceptedMalicious Node Operators

• Risk AcceptedNo Events on Important State Changes

• AcknowledgedTyping Errors

• AcknowledgedUnused Imports

• Acknowledgedmemcpy Optimizations

• Risk AcceptedsharesAmount Can Be Zero

5.1 Gas Inefficiencies
Design Low Version 1 Acknowledged

We have found some gas inefficiencies that could be optimized:

• Lido saves several contract addresses (e.g., the ETH deposit contract) in the storage. Since Lido
is upgradeable, the mentioned variables could be exchanged with constants or immutables that can
be updated with a Proxy upgrade to save storage reads on various interactions.

• Lido.handleOracleReport updates the BEACON_VALIDATORS_POSITION even when the
amount of validators has not changed.

• StakeLimitUtils.calculateCurrentStakeLimit performs stake limit calculations even
when the prevStakeBlockNumber is the current block number. It could just return
prevStakeLimit in that case.

• NodeOperatorsRegistry.removeSigningKeys and removeSigningKeysOperatorBH are
inefficient if 0 < (totalSigningKeys - 1) - _index < (_amount - 1) as more swaps
from the last to the current position are performed than necessary.

• NodeOperatorsRegistry._removeSigningKey assigns the new totalSigningKeys value
to a value that is loaded from storage, while the same value has already been loaded from storage
before (lastIndex).

Lido - Lido - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

• NodeOperatorsRegistry.assignNextSigningKeys calculates
stake + 1 > entry.stakingLimit while stake >= entry.stakingLimit would be
sufficient.

• NodeOperatorsRegistry.assignNextSigningKeys finds the operator with the smallest stake
with the statement bestOperatorIdx == cache.length || stake < smallestStake.
This can be simplified to stake < smallestStake by initially setting smallestStake to the
maximum value of uint256.

• NodeOperatorsRegistry._storeSigningKey and _loadSigningKey load signatures by
iterating over the words of the signature and loading them from the memory location at
add(_signature, add(0x20, i)) on every iteration. This can be simplified to i by setting the
loop variable to signature + 32 and the execution condition to
i <= signature + SIGNATURE_LENGTH.

• LidoOracle pushes reports to the CompositePostRebaseBeaconReceiver which pushes
reports to the SelfOwnedStETHBurner. Since the SelfOwnedStETHBurner is currently the only
receiver, this indirect route is not necessary.

• SelfOwnedStETHBurner._requestBurnMyStETH uses Lido.transfer and calculates the
share amount by calling Lido.getSharesByPooledEth. This second call could be avoided by
using the transferShares function.

Acknowledged:

Lido states:

Thank you for the suggestions, we will take them into consideration for the next protocol upgrade.

5.2 Inconsistent Event Order
Design Low Version 1 Risk Accepted

The order in which the Transfer and TransferShares events are emitted is inconsistent. In the
transferShares function in StETH, the TransferShares event is emitted first. In all other cases,
Transfer is emitted first.

Note also that these events are always emitted after calling the _transferShares function. To avoid
the duplication of emitted events and reduce code size, it would also be possible to emit the events within
the _transferShares function itself.

Risk accepted:

This change is scheduled for the next update.

5.3 LidoOracle Initialized With Wrong Epoch
Design Low Version 1 Acknowledged

In the initialize function of the LidoOracle, the expectedEpoch is set as follows:

uint256 expectedEpoch = _getFrameFirstEpochId(0, beaconSpec) + beaconSpec.epochsPerFrame;

Lido - Lido - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

However, _getFrameFirstEpochId will always return 0 here. So the first expected epoch is set to
beaconSpec.epochsPerFrame. However, it would make little sense for a member to report an epoch
before the contract was deployed. Instead, the expectedEpoch could be set to an epoch which occurs
after the contract is deployed, for example using _getCurrentEpochId.

Acknowledged:

The initialize function can't be called again on the Lido contract, which is already deployed.
Therefore this is only an issue if a redeployment becomes necessary.

5.4 Malicious Node Operators
Trust Low Version 1 Risk Accepted

Node operators are trusted entities in the Lido ecosystem. They are responsible for correctly running the
validators as well as distributing MEV rewards to the contract. They can only be incentivized to behave
decently so it is possible that certain economic opportunities could incentivize them to behave
maliciously.

For example, it can be hard to verify the amount of MEV rewards node operators generate with the nodes
they are running. Malicious node operators could choose to not distribute these rewards but instead
pocket them themselves.

Furthermore, and most importantly, node operators have no ownership of the ETH that are locked in their
validators. This means that whatever incentive they have to run the nodes benevolently could be offset
by a more financially lucrative incentive. One example could be a short position in stETH that becomes
profitable. As the staked ETH are not owned by the operators, this is very much possible due to slashing
as can be seen in the following example (assuming the Merge has already happened and according to
current spec):

• A malicious node operator executes 2 attestations to the same target on all of their controlled
validator nodes. At the time of this writing, single validators run up to ~8,000 nodes of the ~400,000
nodes currently on the Beacon Chain).

• Each node gets slashed by 1 ETH, reducing the amount of ETH in the protocol by ~8,000 or ~0.1%
of Lido's total supply.

• After 18 days, the validators get slashed again based on the amount of validators that have been
slashed in the previous 16 days: Each validator loses ~1.8 ETH.

• In total, the supply of Lido drops by ~0.5%.

If 2 node operators collude, the total supply drops by ~1.7%. If 3 operators collude, it drops by ~3.6%.

Depending on the market reaction, the value of stETH could decrease dramatically following these
events, making a decently sized short position in stETH (or more likely wstETH) profitable.

Risk accepted:

Lido states:

The risk is mitigated by maintaining healthy validators set with monitoring and DAO governance
processes. There is a set of policies and management actions:

• onboarding new NOs to decentralize further;

• limiting the stake amount per single NO;

Lido - Lido - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

• developing dashboards and tools to monitor network pasticipation performance (now
open-sourced https://github.com/lidofinance/ethereum-validators-monitoring)

• developing dashboards and tools to monitor MEV and priority fee distribution (approaching
testing stage for the upcoming Merge)

Despite the fact that Ethereum staking is not delegation-friendly, Lido DAO already has on-chain
levers to address malicious NO behavior: excluding them from the new stake, disabling fee
distribution, excluding them from the set, considering penalties on other chains if applicable, and so
on. Once and if withdrawal-credentials initiated exits are implemented, there will appear additional
on-chain enforcement mechanics which would allow building more permissionless schemes for the
validators set.

5.5 No Events on Important State Changes
Design Low Version 1 Risk Accepted

The DepositSecurityModule does not emit events on the following important state changes:

1. When the owner calls setLastDepositBlock.

2. When depositBufferedEther is called.

Risk accepted:

Lido states:

• setLastDepositBlock will be used only if re-deploy is needed, so we may add the event for
future versions.

• depositBufferedEther emits the Unbuffered event in the Lido contract which is still enough
for indexers, though, will consider the change if an upgrade is needed.

5.6 Typing Errors
Design Low Version 1 Acknowledged

• NodeOperatorsRegistry._loadOperatorCache returns an error message with a typing error:
INCOSISTENT_ACTIVE_COUNT.

• Lido._setProtocolContracts emits the event ProtocolContactsSet.

Acknowledged:

This will be fixed in the next major protocol upgrade.

5.7 Unused Imports
Design Low Version 1 Acknowledged

Lido imports SafeMath64.sol which is not used in the contract.

Lido - Lido - ChainSecurity - © Decentralized Security AG 14

https://github.com/lidofinance/ethereum-validators-monitoring
https://chainsecurity.com

Acknowledged:

This will be fixed in the next major protocol upgrade.

5.8 memcpy Optimizations
Design Low Version 1 Acknowledged

The memcpy function in the MemUtils library is quite critical for gas costs. It is called by copyBytes,
which is in turn called from within nested loops in
NodeOperatorsRegistry.assignNextSigningKeys. The function itself also contains a loop, for a
total of three nested loops.

While it is already written in assembly, it can be optimized further. First, let's take a look at the loop.

for { } gt(_len, 31) { } {
 mstore(_dst, mload(_src))
 _src := add(_src, 32)
 _dst := add(_dst, 32)
 _len := sub(_len, 32)
}

As it stands, there are three variables which are modified per loop iteration. Ideally, one would only
change one variable per iteration, and use a loop bound based on this variable. However, this change
would add additional overhead outside the loop, which may not pay off in general. Currently, the loop is
only executed 1-3 times per call, as the _len parameter is only ever 48 or 96. One may also consider
creating functions specifically for copying byte arrays of length 48 and 96, as this would allow a complete
unrolling of the loop.

After the loop, the following code is executed:

if gt(_len, 0) {
 let mask := sub(shl(1, mul(8, sub(32, _len))), 1) // 2 ** (8 * (32 - _len)) - 1
 let srcMasked := and(mload(_src), not(mask))
 let dstMasked := and(mload(_dst), mask)
 mstore(_dst, or(dstMasked, srcMasked))
}

• As _len is a uint256, it is more efficient to just check the condition if _len {.

• The mask could also be written as shr(0xff..ff, shl(3, _len)) or
shr(not(0), shl(3, _len)).

Acknowledged:

Lido states:

We decided to leave the assembly code as is to prevent possible peculiarities.

5.9 sharesAmount Can Be Zero
Design Low Version 1 Risk Accepted

Lido - Lido - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

Due to rounding errors, the value returned by getSharesByPooledEth can be zero. In the function
_submit in Lido, the check sharesAmount == 0 is made. This is assumed to hold either on the first
deposit, or in the case of a complete slashing. However, this can also occur if rounding errors lead to
getSharesByPooledEth returning 0. Thus, a user would receive a disproportionate amount of shares,
as they would get a 1:1 rate of ETH to StETH, despite the share value being lower. Note that with the
current state of the live contracts, this can only occur if msg.value == 1.

Risk accepted:

Lido is aware of rounding errors, however chooses not to fix them as they are difficult to correct without
sacrificing gas efficiency or backwards compatibility.

Lido - Lido - ChainSecurity - © Decentralized Security AG 16

https://chainsecurity.com

6 Notes
We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

6.1 Deposits Can Be Blocked by Node Operators
Note Version 1

DepositSecurityModule requires the keysOpIndex to not change between creation of a
depositBufferedEther transaction and its execution:

uint256 onchainKeysOpIndex = INodeOperatorsRegistry(nodeOperatorsRegistry).getKeysOpIndex();
require(keysOpIndex == onchainKeysOpIndex, "keys op index changed");

Since the keysOpIndex can be changed by node operators using addSigningKeysOperatorBH or
removeSigningKeysOperatorBH, malicious node operators can delay depositing even when they are
not activated. The only way to counter this problem is to change the rewardAddress of such node
operators.

6.2 No Quorum Sanity Checks
Note Version 1

LidoOracle and DepositSecurityModule allow the addition of members / guardians and the setting
of a quorum that has to be reached by these entities. The quorum can however be set to any value
(except for 0 in the case of LidoOracle) independently of the number of members / guardians.

Lido - Lido - ChainSecurity - © Decentralized Security AG 17

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.2.1 StETH
	2.2.2 WstETH
	2.2.3 Lido
	2.2.4 NodeOperatorsRegistry
	2.2.5 LidoOracle
	2.2.6 DepositSecurityModule
	2.2.7 LidoExecutionLayerRewardsVault
	2.2.8 SelfOwnedStETHBurner
	2.2.9 Roles & Trust Model

	3 Limitations and use of report
	4 Terminology
	5 Findings
	5.1 Gas Inefficiencies
	5.2 Inconsistent Event Order
	5.3 LidoOracle Initialized With Wrong Epoch
	5.4 Malicious Node Operators
	5.5 No Events on Important State Changes
	5.6 Typing Errors
	5.7 Unused Imports
	5.8 memcpy Optimizations
	5.9 sharesAmount Can Be Zero

	6 Notes
	6.1 Deposits Can Be Blocked by Node Operators
	6.2 No Quorum Sanity Checks

