

PUBLIC

Code Assessment

of the DSS Cure

Smart Contracts

May 12, 2022

Produced for

by

Contents

1 Executive Summary 3

2 Assessment Overview 5

3 Limitations and use of report 7

4 Terminology 8

5 Findings 9

6 Notes 11

MakerDAO - DSS Cure - ChainSecurity - © Decentralized Security AG 2

https://chainsecurity.com

1 Executive Summary
Dear all,

Thank you for trusting us to help MakerDAO with this security audit. Our executive summary provides an
overview of subjects covered in our audit of the latest reviewed contracts of DSS Cure according to
Scope to support you in forming an opinion on their security risks.

Cure is an extension for the Dai Stablecoin System which allows contracts to report DAI amounts which
must be subtracted from the total debt during the shutdown process. The necessity for this arose as a
new extenstion, DSS-Wormhole generates such DAI which must not be included the settlement during
shutdown.

The most critical subjects covered in our audit are security, functional correctness and the impact on the
existing system. In summary, we find that the codebase provides a high level of security. There is a risk
that the shutdown process is blocked in case the Governance pauses the Cure contract. For more
information please refer issue description in this report.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

MakerDAO - DSS Cure - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings
Below we provide a brief numerical overview of the findings and how they have been addressed.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 1

• Risk Accepted 1

Low -Severity Findings 1

• Acknowledged 1

MakerDAO - DSS Cure - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

2 Assessment Overview
In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope
The assessment was performed on the following source code files of the main DSS (DAI Stablecoin
System) repository:

• cure.sol

• end.sol (new functionality related to Cure only)

The table below indicates the code versions relevant to this report and when they were received.

V Date Commit Hash Note

1 4 April 2022 13654faec7efbc38a4d48f53130b31e00ac9e4be Initial Version

For the solidity smart contracts, the compiler version 0.6.12 was chosen.

2.1.1 Excluded from scope
All files not explicitly listed above.

2.2 System Overview
Cure adds functionality to the core DAI Stablecoin System which allows external sources to report DAI
amounts that should be subtracted from the total DAI debt during the shutdown process. This is to
account for special/locked DAI which is not eligible to and can't participate in steps 7 to 9 of the shutdown
process, the equal distribution of the remaining collaterals between the remaining DAI holders. The first
example for this is DSS-Wormhole: For DAI being bridged to L1 Ethereum, Wormhole already mints DAI
to the user based on the promised DAI which eventually arrives via the slow bridge. The DAI minted
based on the ilk/ collateral ("promised DAI") increases the VAT's debt until they are settled by the DAI
arriving via the bridge. During shutdown this settlement can no longer take place and instead the bridged
DAI will remain locked in the WormholeJoin contract. As these DAI are not free they must not and can't
participate in the shutdown process. As they are accounted for in vat.debt, the shutdown process must
remove them from the total debt existing in order for the calculation of the collateral distribution to be
correct.

The core changes to the end contract to integrate the new cure functionality are:

• cage(): This function is called in step 2 of the shutdown process. It calls cage() on all
components of the core DAI Stablecoin System, a call to cure.cage() has been added.

• thaw(): This function is called in step 6 of the shutdown process. It sets the final debt of the
system. The new code now sets the value to sub(vat.debt(), cure.tell()) instead of
vat.debt().

The new cure contract supports multiple sources to report amounts to be deducted from the total debt.
While the contract is live (has not been caged yet), all state changing functions can only be executed by
the privileged ward role (the governance).

MakerDAO - DSS Cure - ChainSecurity - © Decentralized Security AG 5

https://chainsecurity.com

The contract offers the following functionality:

1. Administrative functionality:

• rely(): Adds the given account as a ward.

• deny(): Removes the given account as a ward.

• file(): Updates the value for when. This value defines the timeout after which the shutdown
process can continue despite a source not having reported an amount.

2. Cure functionality:

• lift(): Allows adding a new source. This source must implement the following interface:

interface SourceLike {
 function cure() external view returns (uint256);
}

• drop(): Allows removing a source.

• cage(): Cages the cure contract, this sets live to 0. Called by end.cage() during shutdown.

• load(): After the contract has been caged, anyone may execute this function and pass an existing
source as parameter. Stores the value reported by the source. Updates the value when called again.

• tell(): Only when the cure contract has been caged and either all sources have reported their
debt or the timeout has passed, returns the total amount reported by all sources. Used by
end.thaw() to query the reported value.

• tCount(): Returns the number of sources.

• list(): Returns an array with the addresses of the sources.

2.2.1 Trust Model & Roles
Wards: For every contract, each address set to 1 in any of the wards mappings is fully trusted and
expected to behave correctly. The governance and the end contract will bear this role.

MakerDAO - DSS Cure - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

3 Limitations and use of report
Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

MakerDAO - DSS Cure - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

4 Terminology
For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

• Likelihood represents the likelihood of a finding to be triggered or exploited in practice

• Impact specifies the technical and business-related consequences of a finding

• Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment
procedure.

Likelihood Impact
High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

MakerDAO - DSS Cure - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

5 Findings
In this section, we describe our findings. The findings are split into these different categories:

• Design : Architectural shortcomings and design inefficiencies

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 1

• Risk AcceptedCure.cage() Might Block Shutdown Procedure

Low -Severity Findings 1

• AcknowledgedPossible Optimizations

5.1 Cure.cage() Might Block Shutdown Procedure
Design Medium Version 1 Risk Accepted

The cage function of the Cure contract, when called, requires that live is 1 and sets it to 0 :

function cage() external auth {
 require(live == 1, "Cure/not-live");
 live = 0;
 /*...*/
}

The function is meant to be called from the End contract :

function cage() external auth {
 /*...*/
 cure.cage();
 /*...*/
}

If an authorized user (the Governance) were to call the cage function of the Cure contract before the
End contract, then live would be 0, therefore the call to cage would revert, effectively blocking the
shutdown process.

Risk Accepted:

MakerDAO states:

We accept this risk as it is, and actually exists in other modules such as the Vow.
We understand each governance action might have important consequences. Each spell
needs to be carefully evaluated.

MakerDAO - DSS Cure - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

5.2 Possible Optimizations
Design Low Version 1 Acknowledged

When using a uint256 as a boolean value, it is more efficient to check if it is non-zero than to check if it
is equal to 1. Both the auth modifier and the liveness checks can be optimized in order to reduce gas
costs and bytecode size.

The auth modifier could be implemented as follows:

modifier auth {
 require(wards[msg.sender] != 0, "Cure/not-authorized");
 _;
}

The liveness could be checked like this:

require(live != 0, "Cure/not-live");

In total these changes reduce the bytecode size by 36 bytes and the cost of each check by 6 gas.

Acknowledged:

Rather than prioritizing minimal gas optimization Maker prefers to follow the standard of how things have
been done before.

MakerDAO - DSS Cure - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

6 Notes
We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

6.1 Delete Amt[Src] in Drop Function Is Useless
Note Version 1

In the drop function, the entry in the mapping amt that corresponds to the source that is removed is
deleted :

function drop(address src) external auth {
 /*...*/
 delete amt[src];
 /*...*/
}

This function can only be executed when the Cure contract is live :

function drop(address src) external auth {
 require(live == 1, "Cure/not-live");
 /*...*/
}

On the other hand, the amt mapping can only be updated in the load function, which can only be
executed when the Cure contract has been caged :

function load(address src) external {
 require(live == 0, "Cure/still-live");
 /*...*/
 uint256 newAmt_ = amt[src] = SourceLike(src).cure();
 /*...*/
}

Since the Cure contract cannot become live again after it has been caged, the amt mapping cannot be
non zero during a call to drop, thus it is useless to remove the entry.

MakerDAO - DSS Cure - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.2.1 Trust Model & Roles

	3 Limitations and use of report
	4 Terminology
	5 Findings
	5.1 Cure.cage() Might Block Shutdown Procedure
	5.2 Possible Optimizations

	6 Notes
	6.1 Delete Amt[Src] in Drop Function Is Useless

