

PUBLIC

Code Assessment

of the Sulu Extensions IV

Smart Contracts

March 07, 2024

Produced for

by

Contents

1 Executive Summary 3

2 Assessment Overview 5

3 Limitations and use of report 12

4 Terminology 13

5 Findings 14

6 Resolved Findings 15

7 Notes 20

Avantgarde Finance - Sulu Extensions IV - ChainSecurity - © Decentralized Security AG 2

https://chainsecurity.com

1 Executive Summary
Dear Mona and Sean,

Thank you for trusting us to help Avantgarde Finance with this security audit. Our executive summary
provides an overview of subjects covered in our audit of the latest reviewed contracts of Sulu Extensions
IV according to Scope to support you in forming an opinion on their security risks.

Avantgarde Finance implements a new version of the Curve price feed and adapted the Curve liquidity
and and Convex Curve adapters while minor updates to the ParaswapV5 adapter have been made.
Moreover, external positions for lending on Maple, borrowing on Liquity, vote-locking for Convex, and
delegating on The Graph were implemented. Also, a shares splitting contract for splitting fees, including
its surrounding architecture, were implemented.

The most critical subjects covered in our audit are functional correctness, access control and integration
with external systems. Security regarding all the aforementioned subjects is high.

The general subjects covered are upgradeability, documentation, specification, gas efficiency,
trustworthiness. Security regarding all the aforementioned subjects is high.

In summary, we find that the codebase provides a high level of security.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

Avantgarde Finance - Sulu Extensions IV - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings
Below we provide a brief numerical overview of the findings and how they have been addressed.

Critical -Severity Findings 0

High -Severity Findings 1

• Code Corrected 1

Medium -Severity Findings 2

• Code Corrected 2

Low -Severity Findings 4

• Code Corrected 4

Avantgarde Finance - Sulu Extensions IV - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

2 Assessment Overview
In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope
The assessment was performed on the source code files inside the Sulu Extensions IV repository based
on the documentation files. The table below indicates the code versions relevant to this report and when
they were received.

V Date Commit Hash Note

1 18 April 2022 ea6c11903cc48e1a6cbb36dedcfab85ed50a2833 Initial Version

2 23 April 2022 2ab92f4a89800b772f9d50bc0ffee9f702a2955f Curve related Fixes

3 09 May 2022 422808344fdc117be2c7df4f39c39a2d35f93143 Final Version

4 07 March 2024 f143dfc5fe98f5e2f0b02ff946a2272b60b095f4 Report Update

For the solidity smart contracts, the compiler version 0.6.12 was chosen.

The following contracts where in scope:

Curve Price Feed and Adapters:

* contracts/release/infrastructure/price-feeds/derivatives/feeds/CurvePriceFeed.sol
* contracts/release/interfaces/ICurveLiquidityPool.sol
* contracts/release/interfaces/ICurvePoolOwner.sol
* contracts/release/interfaces/ICurveRegistryMain.sol
* contracts/release/interfaces/ICurveRegistryMetapoolFactory.sol
* contracts/release/extensions/integration-manager/integrations/utils/bases/CurveLiquidityAdapterBase.sol
* contracts/release/extensions/integration-manager/integrations/adapters/CurveLiquidityAdapter.sol
* contracts/release/extensions/integration-manager/integrations/adapters/ConvexCurveLpStakingAdapter.sol
* contracts/release/extensions/integration-manager/integrations/utils/actions/CurveGaugeV2RewardsHandlerMixin.sol

Maple External Position:

* contracts/release/interfaces/IMapleMplRewards.sol
* contracts/release/interfaces/IMapleMplRewardsFactory.sol
* contracts/release/interfaces/IMaplePool.sol
* contracts/release/interfaces/IMaplePoolFactory.sol
* contracts/release/extensions/external-position-manager/external-positions/maple-liquidity/IMapleLiquidityPosition.sol
* contracts/persistent/external-positions/maple-liquidity/MapleLiquidityPositionLibBase1.sol
* contracts/release/extensions/external-position-manager/external-positions/maple-liquidity/MapleLiquidityPositionDataDecoder.sol
* contracts/release/extensions/external-position-manager/external-positions/maple-liquidity/MapleLiquidityPositionLib.sol
* contracts/release/extensions/external-position-manager/external-positions/maple-liquidity/MapleLiquidityPositionParser.sol
* contracts/release/utils/AssetHelpers.sol

Global config and shares splitter:

* contracts/persistent/shares-splitter/SharesSplitterFactory.sol
* contracts/persistent/shares-splitter/SharesSplitterLib.sol
* contracts/persistent/shares-splitter/SharesSplitterProxy.sol
* contracts/persistent/shares-splitter/TreasurySplitterMixin.sol
* contracts/persistent/global-config/GlobalConfigLib.sol
* contracts/persistent/global-config/GlobalConfigProxy.sol
* contracts/persistent/global-config/bases/GlobalConfigLibBase1.sol
* contracts/persistent/global-config/bases/GlobalConfigLibBaseCore.sol
* contracts/persistent/global-config/utils/GlobalConfigProxyConstants.sol
* contracts/persistent/global-config/utils/ProxiableGlobalConfigLib.sol
* contracts/persistent/global-config/interfaces/IGlobalConfig1.sol
* contracts/persistent/global-config/interfaces/IGlobalConfigVaultAccessGetter.sol

Avantgarde Finance - Sulu Extensions IV - ChainSecurity - © Decentralized Security AG 5

https://chainsecurity.com

ParaswapV5 Adapter Changes:

* contracts/release/extensions/integration-manager/integrations/adapters/ParaSwapV5Adapter.sol
* contracts/release/extensions/integration-manager/integrations/utils/actions/ParaSwapV5ActionsMixin.sol
* contracts/release/interfaces/IParaSwapV5AugustusSwapper.sol

Convex Voting External Position:

* contracts/release/interfaces/IConvexBaseRewardPool.sol
* contracts/release/interfaces/IConvexCvxLockerV2.sol
* contracts/release/interfaces/IConvexVlCvxExtraRewardDistribution.sol
* contracts/release/interfaces/ISnapshotDelegateRegistry.sol
* contracts/release/interfaces/IVotiumMultiMerkleStash.sol
* contracts/release/extensions/external-position-manager/external-positions/convex-voting/IConvexVotingPosition.sol
* contracts/release/extensions/external-position-manager/external-positions/convex-voting/ConvexVotingPositionDataDecoder.sol
* contracts/release/extensions/external-position-manager/external-positions/convex-voting/ConvexVotingPositionLib.sol
* contracts/release/extensions/external-position-manager/external-positions/convex-voting/ConvexVotingPositionParser.sol

Liquidity Borrowing external positions:

* contracts/release/interfaces/ILiquityBorrowerOperations.sol
* contracts/release/interfaces/ILiquityTroveManager.sol
* contracts/release/extensions/external-position-manager/external-positions/liquity-debt/ILiquityDebtPosition.sol
* contracts/release/extensions/external-position-manager/external-positions/liquity-debt/LiquityDebtPositionDataDecoder.sol
* contracts/release/extensions/external-position-manager/external-positions/liquity-debt/LiquityDebtPositionLib.sol
* contracts/release/extensions/external-position-manager/external-positions/liquity-debt/LiquityDebtPositionParser.sol

The Graph delegations:

* contracts/release/interfaces/ITheGraphStaking.sol
* contracts/release/extensions/external-position-manager/external-positions/the-graph-delegation/ITheGraphDelegationPosition.sol
* contracts/release/extensions/external-position-manager/external-positions/the-graph-delegation/TheGraphDelegationPositionDataDecoder.sol
* contracts/release/extensions/external-position-manager/external-positions/the-graph-delegation/TheGraphDelegationPositionLib.sol
* contracts/persistent/external-positions/the-graph-delegation/TheGraphDelegationPositionLibBase1.sol

In the review of the commit for V4, only the changes related to the Liquity EP described in Changes in V4
were in scope.

2.1.1 Excluded from scope
Curve is not part of this review and expected to work correctly as documented. The Maple Protocol is not
part of this review and expected to work correctly as documented. ParaswapV5 is expected to work as
expected in the main audit report for that adapter. The Convex Voting contracts are expected to work as
documented. Moreover, Votium and the CvxCRV contract are expected to work as documented. Liquity
is not part of this review and is assumed to function as described in the documentation. The Graph
Protocol is not part of this review and expected to work correctly as documented.

The potential future use cases of the TreasurySplitterMixin are unknown and out of scope.

2.2 System Overview
Version 1This system overview describes the initially received version () of the contracts as defined in the

Assessment Overview.

At the end of this report section we have added subsections for each of the changes accordingly to the
versions.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

Avantgarde Finance offers updates to the current Curve price feed which implies also changes for the
Curve integrations. Also minor changes to the ParaswapV5 adapters have been made. New external
positions are introduced, namely it is now possible to lend and stake on Maple, borrow on Liquity and
vote-lock convex and delegate the votes. Additionally, a shares splitter contract was implemented; it can
be deployed by fund managers and specified as a fee recipient so fees can be split among multiple

Avantgarde Finance - Sulu Extensions IV - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

parties at a constant ratio. For that, some global config was introduced as a part of the surrounding global
architecture.

2.2.1 Curve price feed and Curve integrations
Curve is a decentralized exchange with which Enzyme integrates. Users can deposit liquidity and earn
exchange fees. The Curve integration allows depositing and removing liquidity from Curve as well as
staking the LP tokens to Curve's gauges. Additionally, the ConvexCurve integration, which allows staking
through Convex, has been updated. Many changes on the integrations result from changes made to the
Curve price feed.

Compared to the previous version, the most notable changes are

• Avantgarde Finance adds a view-reentrancy protection mechanism to the Curve price feed to
validate the current virtual price of an LP token by calling a reentrancy protected function on the
Curve pool, if the current virtual price deviates too much from the last validated price.

• The Curve price feed now supports metapools by using the metapool factory as an additional
registry. The ConvexCurve and Curve adapters have been adapted to query the price feed for the
registry information (instead of Curve directly). Hence, the adapters also support metapools.

• The reward claiming mechanism for Curve has been adapted to support non-Ethereum chains by
skipping the direct minting of CRV rewards. In contrast to Mainnet, these are not minted directly to
users but are distributed as regular rewards.

For a general description of the integrations see our previous audit reports. Regarding the updated price
feed we will give a description of the changes.

The Curve price feed supports the following external price feed functions used in the Enzyme system:

• calcUnderlyingValues: Given a derivative token (Curve LP) and its amount, it approximates the
value in the proxy asset (one of the underlying assets) by using Curve's get_virtual_price()
function. Note that this functions also protects from view-reentrancies if the virtual price deviation is
too high by calling withdraw_admin_fees(pool) on the Curve admin contract.

• isSupportedAsset: Defines whether an asset is supported by the price oracle.

Furthermore, updateValidatedVirtualPrices() allows updating the last validated virtual price.

The following admin functionality is implemented:

• addGaugeTokens(WithoutValidation): Adds Gauge tokens. Without validations they are not
checked against the registry or the metapool factory.

• addPools(WithoutValidation): Adds LP tokens. Without validations they are not checked
against the registry or the metapool factory.

• removeDerivatives(): Removes the derivative and makes it unsupported.

• removePools(): Removes the price feed.

• updatePoolInfo(): Updates the information on the pool.

Note that the separation of removal logic of removeDerivatives() and removePools() allows for a
complete removal of the pool but also adds flexibility.

2.2.2 Maple lending
Maple is a DeFi protocol offering under-collateralized borrowing for institutions / whitelisted actors.
Lenders can earn interests and rewards by providing capital. Capital deposited is subject to a minimum
lockup period defined by the pool before it can be withdrawn. Furthermore, lenders may stake to earn
MPL tokens as a reward. For more information please refer to their documentation:
https://maplefinance.gitbook.io/maple/

Avantgarde Finance - Sulu Extensions IV - ChainSecurity - © Decentralized Security AG 7

https://maplefinance.gitbook.io/maple/
https://chainsecurity.com

A new type of external positions will enable vaults of Enzyme to lend capital into Maple pools. For an
overview of how external positions work in Enzyme, please refer to section 2.2.2 External Positions of the
system overview of the Sulu report.

After opening such an external position for a fund, the following actions are available to interact with the
maple protocol:

• Lend: Allows lending the given amount to the specified pool, calls pool.deposit().

• Stake: Allows staking the given amount of the given pool into the given staking rewards contract.
Executes calls to pool.increaseCustodyAllowance() and rewardsContract.stake().

• LendAndStake: Wrapper to lend and stake in one call.

• IntendToReedeem Signals intention to redeem, starts cool-down period after which redemption is
possible. Calls pool.intendToWithdraw().

• Redeem: Redeems the given amount from the given pool using pool.withdraw().

• Unstake: Unstakes the given amount from the given rewards contract. Calls
rewardsContract.withdraw().

• UnstakeAndRedeem: Wrapper to unstake and redeem in one call.

• ClaimInterest: Allows claiming accrued interests. Calls pool.withdrawFunds() and transfers
the interests in form of the liquidity asset to the vault.

• ClaimRewards: Allows claiming the rewards from staking in form of the reward token (understood
to be the MPL token). Calls getReward() on the rewards contract and transfers the tokens
onwards to the vault.

The Maple protocol is fully trusted to work correctly as described. Note that several of the Maple
contracts can be paused, which inhibits interactions, including withdrawals.

2.2.3 Global Config and Shares Splitter
Avantgarde Finance introduces a global config contract to allow sharing storage among different
contracts in the system. It introduces a proxy contract and an implementation following EIP-1822 and
EIP-1967. The proxy initializes itself on creation. The library offers the following additional functionality:

• getDispatcher() to get the dispatcher.

• setGlobalConfigLib() to change the global config library and getGlobalConfigLib() to get
the current library.

• isValidRedeemSharesCall() to validate whether a redeem shares call is valid. If a fund is a V4
fund, it checks the validity of the redeem function and the contract on which it is intended to be
called. Furthermore, it can optionally check whether the recipient and the amount match the
argument that will be provided to the redemption call. In case the validation is passed, true is
returned. Otherwise, false is returned. Note that the integration with this function requires correct
passing of arguments.

Leveraging the functionality described above, an optional shares splitting contract is introduced that
could be specified as the fee recipient to allow splitting fees among multiple users at constant ratios.

To implement this logic a more generic abstract contract TreasurySplitterMixin was implemented. Per
token the totally claimed fee amount of all users and per user are tracked. Each specified user has a
percentage share. It exposes the following functionality to its descendants:

• External functions claimTokens() and claimTokenAmountTo(): The first one claims the full
amount claimable of the token to the msg.sender according to his share. The second claims a
given amount, if possible, to a predefined recipient. Note that both utilize __claimTokens() that is
also exposed to descendants that contains the generic logic for both externally exposed functions.

• Internal function __claimTokenWithoutTransfer() which is the claiming logic without the
transfer.

Avantgarde Finance - Sulu Extensions IV - ChainSecurity - © Decentralized Security AG 8

https://github.com/enzymefinance/protocol/blob/v4/audits/2021-09-CS-protocol-v4.pdf
https://chainsecurity.com

• External getters to get for a given token the claimed fees per user and totally and the split ratio per
user. Internal and external getter to calculate the claimable amount for a user.

• __setSplitRatio that writes the percentages for a given set of users.

Given the mix-in, a more derived SharesSplitterLib contract is implemented. It allows redeeming shares,
which could be non-transferrable, through a chosen method. However, it requires validation on the global
config proxy contract. It implements a function redeemShares() by claiming without a transfer,
validating the redemption call (with optional validation on the redemption amount activated) and finally
redeeming shares.

Note that the the shares splitter is a proxy contract which extends NonUpgradeableProxy without any
modifications (see previous audit reports). A factory SharesSplitterFactory offers a deploy() function to
deploy a proxy that references the SharesSplitterLib as its implementation.

2.2.4 ParaswapV5 adapter changes
The following changes have been made to the ParaswapV5 adapter (see previous reports):

• The adapter allows deployment to specify the fee partner and the fee percent. The code has been
adapted such that calls to ParaswapV5 do not have fixed arguments 0x0 and 0 for those calls to
have a more flexible architecture.

• Now, multiSwap is used instead of protectedMultiswap.

2.2.5 Convex vote-locked CVX external position
Holders of CVX can lock their tokens into the CvxLockerV2 of Convex finance to receive vlCVX (non
transferrable with ERC-20 functions). Note that the CVX tokens will remain locked for 16 epochs. vlCVX
holder are eligible to vote on Snapshot under the cvx.eth snapshot id and to claim CvxCRV and other
extra rewards.

A new type of external positions will enable vaults of Enzyme to lock CVX tokens, to relock them after
they are unlocked, to withdraw the CVX tokens once they are unlocked, to delegate their votes to a
delegate, and to claim rewards. Additionally, the position can claim rewards from Votium (if the
delegation has been made to Votium).

After such an external position is opened, the following actions are available:

• Lock: locks CVX into the vlCVX locker contract.

• Relock: relocks all unlocked CVX in the vlCVX locker contract.

• Withdraw: withdraws all unlocked CVX in the vlCVX locker contract to the vault proxy.

• ClaimRewards: Optionally claims rewards CVX from the locker, optionally claims the extra rewards
from the extra rewards contract, optionally claims rewards from Votium, optionally withdraws from
the CvxCrv staking contract (since other users could claim rewards and stake for the position), and
transfers the full balance of a given array of tokens to the vault proxy. Since there are no checks on
the token addresses, tokens could remain in the position.

• Delegate: Delegate the position's voting power to another address.

Since no debt is taken, getDebtAssets() will be empty. getManagedAssets() will return the sum of
the locked CVX and the currently held CVX.

Avantgarde Finance - Sulu Extensions IV - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

2.2.6 Liquity borrowing
Liquity is a permissionless DeFi protocol offering interest-free borrowing where ETH can be provided as
collateral to mint the LUSD stablecoin. However, a one-time fee is paid when borrowing. Users
interacting with the system have a so-called active trove on which they operate. Most notably, Liquity has
two execution modes. The first one is the normal mode where the minimum collateralization ratio is
110%, while the second one is the recovery mode - active when the global collateralization falls below
150% - where troves can be liquidated if the collateralization ratio drops is below 150%.

A new type of external positions will enable vaults of Enzyme to borrow LUSD on Liquity. For an overview
of how external positions work in Enzyme, please refer to section 2.2.2 External Positions of the system
overview of the Sulu report.

After opening such an external position for a fund, the following actions are available to interact with
Liquity:

• OpenTrove: Opens a trove on Liquity by depositing ETH and withdrawing LUSD.

• AddCollateral: Adds ETH to the active trove as collateral.

• RemoveCollateral: Removes ETH from the active trove.

• Borrow: Draws more debt from the active trove by withdrawing LUSD.

• RepayBorrow: Repays some LUSD debt.

• CloseTrove: Repays all LUSD debt and withdraws all ETH from the trove. The trove becomes
inactive.

getDebtAssets() will return the LUSD debt. getManagedAssets() will return the ETH held by the
trove.

2.2.7 The Graph Delegations
The Graph is a protocol for indexing and querying where indexers are node operators in the network that
stake Graph Tokens in order to provide indexing services. As an incentive, indexers earn rewards from
query fees and indexing rewards. Other parties, namely delegators, can receive a share of the fees
earned by indexers by delegating to the corresponding indexers.

A new type of external positions will enable Enzyme vaults to delegate to several indexers on The Graph.
After such an external position is opened, the following actions are available:

• Delegate: Delegate an amount of The Graph tokens to an indexer.

• Undelegate: Undelegate an amount of pool share from an indexer. Tokens remain locked in the
staking contract for the unbonding period. However, tokens from earlier undelegations (for that
indexer) could be unlocked.

• Withdraw: Withdraw The Graph from a delegation once the unbonding period has passed and the
tokens are unlocked.

Since no debt is created, getDebtAssets() will be empty while getManagedAssets() will return the
sum of all locked tokens and all actively delegated tokens.

Note that the unbonding period is documented to be 28 days. For further details, see The Graph
documentation.

2.2.8 Changes in V2
For the Curve integrations and the Curve price feed following changes have been made:

• updateValidatedVirtualPrices() was removed as validation was always triggered by
calcUnderlyingValues if necessary.

• Functionality to handle a possible pool ownership transfer was added.

Avantgarde Finance - Sulu Extensions IV - ChainSecurity - © Decentralized Security AG 10

https://github.com/enzymefinance/protocol/blob/v4/audits/2021-09-CS-protocol-v4.pdf
https://thegraph.com/docs/en/
https://thegraph.com/docs/en/
https://chainsecurity.com

2.2.9 Changes in V4
Avantgarde Finance reported an issue with the Liquity EP. The issue was mistakenly included in another
report and the error went unnoticed. V4 introduces a fix to the issue by introducing an action
ClaimCollateral that calls claimCollateral(). Further, it modifies the valuation by accounting for
the unclaimed collateral (balance available) in the collateral surplus pool.

2.2.10 Trust Model and Roles
Please refer to the main audit report for a general trust model of Sulu.

The Fund Manager is fully trusted given the reasons detailed in the previous reports. Note that with the
addition of the time-locked tokens for some external positions, e.g. vote-locked Convex and The Graph
tokens, the Fund Manager yields even greater power over funds. Hence, the fund managers are fully
trusted to keep the funds balanced in such a way that users can withdraw their shares.

All external systems are expected to be non-malicious and work correctly as documented. Fund
managers are expected to not only behave honestly but also to understand the systems they are
interacting with. This includes choosing appropriate parameters, e.g., for the slippage protection.

For actions on Liquity troves we expect the fund manager to keep the collateralization ratio above 150%
at all times.

For pauseable systems such as Maple, we assume that they will be paused only temporarily.

In general we assume Enzyme only interacts with normal ERC-20 tokens without any special behavior
including rebasing, multiple entry points or callbacks. This assumption also applies for for the
TreasurySplitterMixin of the SharesSplitter.

Avantgarde Finance - Sulu Extensions IV - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

3 Limitations and use of report
Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

Avantgarde Finance - Sulu Extensions IV - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

4 Terminology
For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

• Likelihood represents the likelihood of a finding to be triggered or exploited in practice

• Impact specifies the technical and business-related consequences of a finding

• Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment
procedure.

Likelihood Impact
High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

Avantgarde Finance - Sulu Extensions IV - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

5 Findings
In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

• Design : Architectural shortcomings and design inefficiencies

• Correctness : Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 0

Avantgarde Finance - Sulu Extensions IV - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

6 Resolved Findings
Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 1

• Code CorrectedConversion Errors When Computing Underlying Graph Token Value

Medium -Severity Findings 2

• Code CorrectedIncorrect Argument Order for lowerHint and upperHint

• Code CorrectedLiquity: Lack of Support for claimCollateral()

Low -Severity Findings 4

• Code CorrectedLending Pools Array Read Twice From Storage in getManagedAssets

• Code CorrectedPool Owner Could Change

• Code CorrectedLendAndStake Stakes the Full Balance

• Code Corrected__curveGaugeV2GetRewardsTokensWithCrv Is Unused

6.1 Conversion Errors When Computing
Underlying Graph Token Value
Correctness High Version 1 Code Corrected

Each delegation contains two values relevant for the totally managed assets per indexer: the delegated
amount denominated in shares and the locked amount denominated in The Graph tokens. To compute
the value in The Graph tokens assigned currently to an indexer pool, getDelegationGrtValue()
implements the following logic:

(uint256 delegationShares, uint256 tokensLocked,) = GRAPH_STAKING_CONTRACT.getDelegation(
 _indexer,
 address(this)
);
(, , , , uint256 poolShares, uint256 poolTokens) = GRAPH_STAKING_CONTRACT.delegationPools(
 _indexer
);
if (delegationShares > 0) {
 return delegationShares.mul(poolTokens).div(poolShares).add(tokensLocked);
}
return tokensLocked;

Note, however, that the view function delegationPools returns the following struct:

struct DelegationPool {
 uint32 cooldownBlocks; // Blocks to wait before updating parameters
 uint32 indexingRewardCut; // in PPM
 uint32 queryFeeCut; // in PPM

Avantgarde Finance - Sulu Extensions IV - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

 uint256 updatedAtBlock; // Block when the pool was last updated
 uint256 tokens; // Total tokens as pool reserves
 uint256 shares; // Total shares minted in the pool
 mapping(address => Delegation) delegators; // Mapping of delegator => Delegation
}

The poolShares return value corresponds to the tokens value in the struct (similar for poolTokens).
Hence, the return values are not used correctly when delegationShares > 0 holds since the shares'
value in GRT will be computed with the inverse of the actual exchange rate.

The tests leave this issue undiscovered since for the delegation pool used in the test case tokens
equals shares which hides the issue.

Ultimately, getManagedAssets() will incorrectly estimate the position.

Code corrected:

The poolTokens and poolShares values are now retrieved in the correct order from
delegationPools.

6.2 Incorrect Argument Order for lowerHint and
upperHint
Correctness Medium Version 1 Code Corrected

In LiquityDebtPositionLib.sol, the order in which the lowerHint and upperHint arguments
are passed is incorrect in several locations.

This includes private calls (from receiveCallFromVault to the action in question), external calls (from
the action to ILiquityBorrowerOperations). Furthermore, there are mix-ups in the tests as well.

Passing the hints in the wrong order generally does not result in the call to Liquity to fail. However, as the
hint is unusable, the execution spends more gas to find the right location.

Below is a summary of whether these function calls are made with a correct argument order for each
action within the smart contract:

• __openTrove:

• Private call: Incorrect

• External call: Incorrect

• __addCollateral:

• Private call: Correct

• External call: Incorrect

• __removeCollateral:

• Private call: Correct

• External call: Incorrect

• __borrow:

• Private call: Incorrect

• External call: Correct

Avantgarde Finance - Sulu Extensions IV - ChainSecurity - © Decentralized Security AG 16

https://chainsecurity.com

• __repayBorrow:

• Private call: Incorrect

• External call: Correct

The convention that Liquity seems to follow is to pass upperHint before lowerHint. In Liquity's
SortedTroves.sol, a different naming (_prevId and __nextID) is used. Since troves are sorted in
descending order, _prevId actually corresponds to upperHint. This is inconsistent with how hints are
interpreted/named in LiquityDebtPosition.test.ts. In some test cases hints are in switched as
well.

One example is the implementation and the test case for repayBorrow: The arguments are switched in
the smart contract code and in the corresponding test. Two wrongs make a right and the hints are passed
correctly.

When an uneven number of such mistakes are made, the hints are useless and the gas consumption of
the call increases.

After switching all the hints arguments in the tests, the gas consumption of the above actions is as
follows:

• __openTrove: Higher (761598 vs. 748240)

• __addCollateral: Higher (516155 vs. 417178)

• __removeCollateral: Lower (549037 vs. 562395)

• __borrow: Lower (1181526 vs. 1194884)

• __repayBorrow: Higher (490531 vs. 391554)

Overall, the arguments upperHint and lowerHint should be rechecked and corrected everywhere to
ensure useful hints are passed to Liquity and gas used is minimized.

Code corrected:

Hints are now always passed in the same order, i.e., upperHint, lowerHint. The code was also
improved to more explicitly identify these two arguments. Furthermore, the tests were updated to use a
collateralization ratio that will avoid placing the trove at an extremity of the sorted list to validate the
correct passing of hints.

6.3 Liquity: Lack of Support for
claimCollateral()
Design Medium Version 1 Code Corrected

The technical documentation of Liquity writes the following:

claimCollateral(address _user): when a borrower’s Trove has been fully redeemed from and closed,
or liquidated in Recovery Mode with a collateralization ratio above 110%, this function allows the
borrower to claim their ETH collateral surplus that remains in the system (collateral - debt upon
redemption; collateral - 110% of the debt upon liquidation).

However, the Liquity position library does not support such an action. Hence, it could be possible that
funds could become stuck in some situations (e.g. liquidations in recovery mode).

Avantgarde Finance - Sulu Extensions IV - ChainSecurity - © Decentralized Security AG 17

https://chainsecurity.com

Code corrected:

The issue has been resolved by adding a ClaimCollateral action and including the unclaimed
collateral in the valuation.

Note:

Note that this issue has been inadvertently included in another report previously.

6.4 Lending Pools Array Read Twice From
Storage in getManagedAssets
Design Low Version 1 Code Corrected

In MapleLiquidityPositionLib.getManagedAssets() the length of the used lending pools is
queried by copying the full array from storage into memory. Next, the for loop iterates over the array and
reads the elements from storage. Hence, gas consumption could be reduced by caching the array in
memory.

Code corrected:

The pools are now cached into memory and no longer read from storage repeatedly.

6.5 Pool Owner Could Change
Design Low Version 1 Code Corrected

To prevent the manipulation of a pool, reentrancy is checked through the withdraw_admin_fees
function of the pool owner contract. However, the pool owner address could change and hence such calls
on the pool could fail not due to reentrancy but due to access control. The price feed stores the address
as an immutable and, thus, could become unusable in the aforementioned scenario of changing
ownerships.

Code corrected:

The pool owner address is not immutable anymore. Now, it can be changed by governance.

6.6 LendAndStake Stakes the Full Balance
Design Low Version 1 Code Corrected

LendAndStake is an action wrapping the lending and the staking action. First, it lends an amount of
liquidity assets to the Maple pool. Next, it stakes LP tokens to the rewards contract to get some extra
rewards:

function __lendAndStakeAction(bytes memory _actionArgs) private {
 (
 address pool,
 address rewardsContract,
 uint256 liquidityAssetAmount
) = __decodeLendAndStakeActionArgs(_actionArgs);

Avantgarde Finance - Sulu Extensions IV - ChainSecurity - © Decentralized Security AG 18

https://chainsecurity.com

 __lend(IMaplePool(pool).liquidityAsset(), pool, liquidityAssetAmount);
 __stake(rewardsContract, pool, ERC20(pool).balanceOf(address(this)));
}

The argument passed to the internal __stake function is the full balance of the pool token. Note that it is
also possible to lend the underlying without staking. Consider now the following scenario:

1. 100 tokens are lent into the pool. 100 LP tokens are received.

2. Later, lend and stake is used with 100 underlying tokens.

3. The full balance, namely 200 LP tokens, will be staked.

Such behavior could be unexpected for fund managers.

Code corrected:

The code of __lendAndStakeAction() has been changed and now only stakes the amount of tokens
received.

6.7 __curveGaugeV2GetRewardsTokensWithCrv
 Is Unused
Design Low Version 1 Code Corrected

The internal function __curveGaugeV2GetRewardsTokensWithCrv is unused and could be removed
to reduce deployment cost.

Code corrected:

The function has been removed.

Avantgarde Finance - Sulu Extensions IV - ChainSecurity - © Decentralized Security AG 19

https://chainsecurity.com

7 Notes
We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

7.1 Derived Contracts Could By-Pass the
Invariant on the Sum of Shares
Note Version 1

The TreasurySplitterMixin is an abstract contract that allows splitting funds at constant ratios (which
should sum up to 100%) among users. The only possibility to modify the split ratio in a more derived
contract is through the internal function __setSplitRatio.

function __setSplitRatio(address[] memory _users, uint256[] memory _splitPercentages)
 internal
{
 uint256 totalSplitPercentage;
 for (uint256 i; i < _users.length; i++) {
 // ... duplicate and non-zero validation
 userToSplitPercentage[_users[i]] = _splitPercentages[i];
 totalSplitPercentage = totalSplitPercentage.add(_splitPercentages[i]);
 emit SplitPercentageSet(_users[i], _splitPercentages[i]);
 }
 require(totalSplitPercentage == ONE_HUNDRED_PERCENT, "__setSplitRatio: Split not 100%");
}

This function is agnostic to the current storage of the contract. Hence, the following scenario could occur:

1. A more derived contract sets the split ratio with __setSplitRatio to 100% for user A. Hence,
userToSplitPercentage for A will be 100% while no invariants are violated.

2. In another step, the more derived contract tries to add user B to the sharing mechanism. It passes
only user B and 50% to the function.

3. Now, the userToSplitPercentage is set to 50% for B.

4. The sum of all user split percentages is 150% which violates the invariant.

Hence, the current implementation is only suited for one-time setting of split ratios.

With the current usage, this is not an issue as the shares splitter contract will set the ratio only once upon
creation. However, future contracts inheriting from the TreasurySplitterMixin could require some
additional logic to prevent the invariant violations described above.

Avantgarde Finance - Sulu Extensions IV - ChainSecurity - © Decentralized Security AG 20

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.2.1 Curve price feed and Curve integrations
	2.2.2 Maple lending
	2.2.3 Global Config and Shares Splitter
	2.2.4 ParaswapV5 adapter changes
	2.2.5 Convex vote-locked CVX external position
	2.2.6 Liquity borrowing
	2.2.7 The Graph Delegations
	2.2.8 Changes in V2
	2.2.9 Changes in V4
	2.2.10 Trust Model and Roles

	3 Limitations and use of report
	4 Terminology
	5 Findings
	6 Resolved Findings
	6.1 Conversion Errors When Computing Underlying Graph Token Value
	6.2 Incorrect Argument Order for lowerHint and upperHint
	6.3 Liquity: Lack of Support for claimCollateral()
	6.4 Lending Pools Array Read Twice From Storage in getManagedAssets
	6.5 Pool Owner Could Change
	6.6 LendAndStake Stakes the Full Balance
	6.7 __curveGaugeV2GetRewardsTokensWithCrv Is Unused

	7 Notes
	7.1 Derived Contracts Could By-Pass the Invariant on the Sum of Shares

