

PUBLIC

Code Assessment

of the KyberSwap Elastic V2

Smart Contracts

May 16, 2023

Produced for

by

Contents

1 Executive Summary 3

2 Assessment Overview 5

3 Limitations and use of report 10

4 Terminology 11

5 Findings 12

6 Resolved Findings 13

7 Informational 17

Kyber Network - KyberSwap Elastic V2 - ChainSecurity - © Decentralized Security AG 2

https://chainsecurity.com

1 Executive Summary
Dear Kyber Team,

Thank you for trusting us to help Kyber Network with this security audit. Our executive summary provides
an overview of subjects covered in our audit of the latest reviewed contracts of KyberSwap Elastic V2
according to Scope to support you in forming an opinion on their security risks.

Kyber Network implements an AMM that allows liquidity providers to concentrate the liquidity in a certain
price range, with the fees being automatically reinvested in the second constant product curve without
concentrated liquidity. On top of the AMM, Kyber Network implements the anti-sniping mechanism to
mitigate the issue of just-in-time liquidity provision, and a TWAP oracle for each pool.

The most critical subjects covered in our audit are functional correctness, access control, and precision of
arithmetic operations. Security regarding all the aforementioned subjects is good.

The general subjects covered are code complexity, trustworthiness, gas efficiency and documentation.
Security regarding all the aforementioned subjects is high.

In summary, we find that the codebase provides a good level of security.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

Kyber Network - KyberSwap Elastic V2 - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings
Below we provide a brief numerical overview of the findings and how they have been addressed.

Critical -Severity Findings 0

High -Severity Findings 1

• Code Corrected 1

Medium -Severity Findings 0

Low -Severity Findings 6

• Code Corrected 5

• Risk Accepted 1

Kyber Network - KyberSwap Elastic V2 - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

2 Assessment Overview
In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope
The assessment was performed on the source code files inside the KyberSwap Elastic V2 repository
based on the documentation files. This assessment is performed on the modified codebase from
KyberSwap Elastic report. The scope of this review is focused on the changes in the files from Scope,
compared to the last commits of the KyberSwap Elastic report. A focus was done on the Pool contract.

For this audit, the following files in the contracts folder are in scope:

• All files in interfaces subfolder, if not mentioned in Excluded from Scope.

• All files in libraries subfolder, if not mentioned in Excluded from Scope.

• All files in periphery subfolder, if not mentioned in Excluded from Scope.

• oracle/PoolOracle.sol

• Factory.sol

• Pool.sol

• PoolStorage.sol

• PoolTicksState.sol

Open issues and Notes reported in the report of KyberSwap Elastic are not repeated in this report but
may still apply. Please refer to report of the KyberSwap Elastic review.

The table below indicates the code versions relevant to this report and when they were received.

V Date Commit Hash Note

1 24 April 2023 1902450fd9bcbc39c8cf53b0570837513d32cdfb Initial Version

2 10 May 2023 5c5f87619544e29df0af35dfb5fb98176c18b22b Updated Version

3 15 May 2023 3ba84353cbd88f30f222bb9c673e242a2e46fd12 Version with fixes

For the solidity smart contracts, the compiler version 0.8.9 was chosen.

2.1.1 Excluded from scope
Every contract not explicitly listed above and third party libraries are out-of-scope. Especially:

* interfaces/periphery/IQuoterV2.sol
* interfaces/IWETH.sol
* libraries/FullMath.sol
* libraries/TickMath.sol
* All files in ``mock`` subfolder of ``contracts`` folder.
* All files in ``echidna`` subfolder of ``contracts`` folder.
* periphery/libraries/BytesLib.sol
* periphery/libraries/PoolTicksCounter.sol
* periphery/QuoterV2.sol

Kyber Network - KyberSwap Elastic V2 - ChainSecurity - © Decentralized Security AG 5

https://chainsecurity.com/wp-content/uploads/2022/06/ChainSecurity_Kyber_Network_KyberSwap_Elastic_audit.pdf
https://chainsecurity.com/wp-content/uploads/2022/06/ChainSecurity_Kyber_Network_KyberSwap_Elastic_audit.pdf
https://chainsecurity.com/wp-content/uploads/2022/06/ChainSecurity_Kyber_Network_KyberSwap_Elastic_audit.pdf
https://chainsecurity.com

2.2 System Overview
Version 1This system overview describes the initially received version () of the contracts as defined in the

Assessment Overview.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

KyberSwap Elastic V2 is a version of noncustodial dynamic market maker protocol implementation, that
is similar to Kyber DMM v1 and other AMM protocols. It differs from Kyber DMM v1 in two main ways:

1. Concentrated liquidity: similar to Uniswap V3 protocol, KyberSwap Elastic V2 allows liquidity
providers (LPs) to provide liquidity into a specific price range. This allows more effective liquidity
utilization for the LPs.

2. Reinvestment curve: this curve allows LP fees to be automatically reinvested into the pool, thus
achieving the compounding interest for LP position.

The main contracts of the KyberSwap Elastic V2 are:

• Factory

• Pool

• Router

• AntiSnipAttackPositionManager

• PoolOracle

2.2.1 Factory
Factory provides governance fee destination and percentage via feeConfiguration function. Factory
contract creates new Pool contracts for given pair of tokens and swap fee. The implementation code of
new Pool contracts that the factory creates cannot be updated. Pool contracts themselves are also not
upgradeable. Factory also stores all whitelisted position managers for the Pool contracts. Factory has
one privilege role: configMaster. Holder of this role can:

• Change configuration master

• Enable or disable position manager whitelisting

• Adding new position manager contracts to the whitelist

• Update Vesting period duration (Used by AntiSnipAttackPositionManager)

• Change governance fee and governance fee recipient. The governance fee cannot be higher than
20%.

• Adding new fee values and distances that pools can support.

2.2.2 Pool
The Pool contract implements the AMM with concentrated liquidity. For liquidity provision, it allows
whitelisted addresses, typically the AntiSnipAttackPositionManager to mint new positions or
modify existing ones on the pool with mint(). The burn function is permissionless and allows the owner
of the position to partially or fully de-provision their position. Interaction with mint() and burn() will
send the owed amount of reinvestment tokens to the msg.sender. Holders of RTokens can then
redeem them with burnRTokens() for the underlying tokens of the pool.

Regular users can use the swap function to swap between the pool's underlying assets, the fees
collected during a swap are reinvested in the reinvestment curve and RTokens are minted for the

Kyber Network - KyberSwap Elastic V2 - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

liquidity providers and the governance. For a flash loan, users can use the flash function to borrow part
of or all the assets from the pool. The fees collected on a flash loan are sent to the governance and are
not reinvested, and thus do not contribute to the LP fees growth.

2.2.2.1 Formulas
For the current amount of T

0
 and T

1
, a Pool implements a constant product automated market maker

with formula
x * y = (Lb + Lr)2

, where L
b
 is an aggregated liquidity from all DMM LPs positions that provide liquidity for the current price

p
c
 and L

r
 is liquidity provided by the reinvestment curve.

Concentrated liquidity provision is possible at specific price ranges. Each price is linked to a tick. The
price at a tick t is given by

√ 1.0001t

See Ticks section for more info about ticks. When an initialized tick is crossed, the active base liquidity L
b

is updated to represent the new aggregated liquidity available at the new price.

All fees collected from swaps effectively increase the L
r
 amount. Part of this fee goes to the governance

address. The government fee percentage and receiver configuration are stored on the Factory contract.
The maximum government fee is 20% of the swap fees. When a swap crosses a tick or when users
add/remove liquidity from the pool, the reinvestment tokens (RTokens) are minted for the DMM position
owners. The minted RTokens are ERC20 tokens that can be transferred and burned to get a share of
reinvestment curve liquidity.

The Pool contract supports flash loan functionality. The flash loan fee is the same as the swap fee and
the full fee amount is sent to the Factory defined governance fee destination address.

The formulas for price computations are (1.) for the current price p
c
, and (2.) for the target price p

t
:

1. pc = y
x

2. pt = y + Δy
x + Δx

The formulas for a swap are (3.) for T
0
 to T

1
, and (4.) for T

1
 to T

0
:

3. (x + (1 − fee) * Δx) * (y + Δy) = (Lb + Lr)2

4. (x + Δx) * (y + (1 − fee) * Δy) = (Lb + Lr)2

Each swap will reinvest the collected fees in the reinvesment curve, so the invariant is updated at each
swap step. The formula to compute the new invariant after a swap is:

(x + Δx) * (y + Δy) = (Lb + L 0

r)2

The formulas to compute the new liquidity of the reinvestment curve after the swap are (5.) for T
0
 to T

1
,

and (6.) for T
1
 to T

0
:

5. √ (xr + fee * Δx) * yr = L 0Δx
r

6. √ xr * (yr + fee * Δy) = L 0Δy
r

Since the square root is costly to compute on a smart contract, Kyber Network implements
approximations for (5.) and (6.) that are resp. (7.) and (8.):

7. L 0Δx
rapprox

= Lr + fee * Δx * √ pc

2

8. L 0Δy
rapprox

= Lr + fee * Δy
2 * √ pc

The amount of RTokens that are minted represents the active DMM position's participation in the
increase of the reinvestment curve's liquidity:

calcrMintQty = L 0

b

L 0

b + L 0

rapprox

*
L 0

rapprox
− Lr

Lr
* TotalSupplyRTokens

Kyber Network - KyberSwap Elastic V2 - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

2.2.3 Ticks
For a Pool with a tickDistance equal to t

d
, an initialized tick t will be responsible for the prices in

[a, b) with:

a = √ 1.0001t , b = √ 1.0001t + td

Each initialized tick is updated when they are entered from below, left from below, or modified due to an
LP position tweak. Each initialized tick holds information about the LP positions using that tick as a
boundary (up or down):

• liquidityGross: positive value. The sum of the liquidity of all the positions having this tick as
a boundary (up or down).

• liquidityNet: can be positive or negative. Active liquidity delta to be added/removed to/from
the active liquidity L

b
 when the tick is crossed. If the tick t is crossed up, the net liquidity from

tick t+1 is added, if the tick t is crossed down, the net liquidity from tick t is deducted. The
value added by an LP is negative/positive when the tick is an upper/lower tick.

• feeGrowthOutside: yields a value such that the difference between a range's upper and
lower ticks' feeGrowthOutside is equal to the fee growth inside the range

• secondsPerLiquidityOutside: yields a value such that the difference between a range's
upper and lower ticks' secondsPerLiquidityOutside is equal to the seconds elapsed per
unit of active base liquidity inside the range

To help the computation of feeGrowthOutside and secondsPerLiquidityOutside, the pool
tracks the two values feeGrowthGlobal and secondsPerLiquidityGlobal, holding the global
growth of the fee and the seconds elapsed per active unit of base liquidity L

b
 over the whole pool.

2.2.4 Router
The Pool contracts rely on callbacks to get the funds from the message sender. The Router contract
acts as a service contract, that allows using token approvals to fulfill the callback request from pool. In
addition, using the swap path data, the user can perform a chain of swaps between multiple pairs of
tokens.

2.2.5 AntiSnipAttackPositionManager
A snipping attack is an attack vector for concentrated liquidity pools. It is also known as : Just-in-Time
Liquidity (JIT). A liquidity provider can add and remove liquidity atomically in one block, sandwiching the
swap transactions. This way, the LP gains the majority of the swap fees, while not having a long-term
commitment to liquidity provision. AntiSnipAttackPositionManager is a contract that prevents this,
by introducing a vesting period for the acquired fees. The contract will distribute a unique ERC721 token
for every position LPs open. AntiSnipAttackPositionManager contract will act as a direct liquidity
provider for the pool and will receive and hold the RTokens from fees. It does so by locking aside the
appropriate part of RTokens and paying out the vested RTokens. The amount of withdrawable fees
linearly grows during the vesting period, which is defined in the Factory contract. If the position is
removed before the end of the vesting period, tokens that are still locked will be burned without profit.
Effectively, this prevents the creation and destruction of the liquidity position in the same block and does
not allow the malicious LPs to avoid the impermanent loss risk.

2.2.6 PoolOracle
The PoolOracle contract implements a Time Weighted Average Price (TWAP) oracle. The oracle
works in the same way Uniswap V3 TWAP oracle works and can be used to indicate the approximated
geometric average price of a pair of assets on a given pool. The oracle can track the price of multiple
pairs simultaneously by tracking a mapping indexed by msg.sender. It yields a finite number of
observations (cardinality) per pool, at most one observation can be recorded per block, and the
latest observation has the cumulative tick value of

Kyber Network - KyberSwap Elastic V2 - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

n
∑

i = 1
observationTicki * observationTimei − observationTimei − 1

with observationTick
0
 = 0 and observationTime

0
 = block.timestamp at oracle initialization.

A new observation is triggered from the Pool when:

• a tick (initialized or not) is crossed during a swap, the oracle is updated with the tick before the swap

• an LP position is updated (_tweakPosition() is called)

To have access to historic prices, one can voluntarily pay for the initialization of more observation slots
by calling the function increaseObservationCardinalityNext.

The following functions are available to query the cumulative tick values:

• observeFromPool: get the value of the accumulator at different points in time starting from now
([now-secondsAgos

0
 , now-secondsAgos

1
 , ...]) in a given pool

• observe: get the value of the accumulator at different points in time starting from a given time
([time-secondsAgos

0
 , time-secondsAgos

1
 , ...]) in the pool that has the address

msg.sender

• observeSingle: get the value of the accumulator at one point in time starting from a given time
([time-secondsAgo) in the pool that has the address msg.sender

• observeFromPoolAt: get the value of the accumulator at different points in time starting from a
given time ([time-secondsAgos

0
 , time-secondsAgos

1
 , ...]) in in a given pool

2.2.7 Trust model

• configMaster: is trusted to act non-maliciously and to the advantage of the system and the users
by setting reasonable parameters and whitelisting trusted addresses

• Pool deployed and unlocker: trusted

• liquidity providers: not trusted

• users: not trusted

Kyber Network - KyberSwap Elastic V2 - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

3 Limitations and use of report
Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

Kyber Network - KyberSwap Elastic V2 - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

4 Terminology
For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

• Likelihood represents the likelihood of a finding to be triggered or exploited in practice

• Impact specifies the technical and business-related consequences of a finding

• Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment
procedure.

Likelihood Impact
High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

Kyber Network - KyberSwap Elastic V2 - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

5 Findings
In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

• Security : Related to vulnerabilities that could be exploited by malicious actors

• Design : Architectural shortcomings and design inefficiencies

• Correctness : Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 1

• Risk AcceptedDOMAIN_SEPARATOR Is Not Recomputed if chainId Changes

5.1 DOMAIN_SEPARATOR Is Not Recomputed if
chainId Changes
Security Low Version 1 Risk Accepted

CS-KYBE2-003

The ERC712Permit.DOMAIN_SEPARATOR is immutable, and thus won't be changed if the chain forks. If
Ethereum fork in the future (like PoW fork), the chainId will change however the BasePositionManager on
forked chain will still accept permit with old chainId. This leads to cross-chain replay attacks, where
signature from one domain is used on the other domain.

Kyber Network - KyberSwap Elastic V2 - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

6 Resolved Findings
Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 1

• Code CorrectedOracle Observation Functions Parameters

Medium -Severity Findings 0

Low -Severity Findings 5

• Code CorrectedCompiler and Library Versions

• Code CorrectedMissing Sanity Checks

• Code CorrectedSwap Amount Vs Price Limit Discrepancy

• Code CorrectedmaxNumTicks Computation Can Be Wrong

• Code CorrectedsecondsPerLiquidity of the First LP Starts at UNIX Time 0

6.1 Oracle Observation Functions Parameters
Correctness High Version 1 Code Corrected

CS-KYBE2-001

The PoolOracle functions observe, observeSingle, and observeFromPoolAt accept arbitrary
parameters time that should serve as a reference point for the secondsAgo parameter, and tick that
should be used to transform the latest observation if needed. But the Oracle library requires the
provided time to be the current block timestamp, and tick to be the current tick of the pool. More
specifically for time, the function Oracle.lte requires a and b to be chronologically before time.
Thus, an arbitrary time parameter may return a wrong value for the accumulator. The same is valid for
an arbitrary value of tick, which could yield an incorrect accumulator if the last observation had to be
transformed.

Example with arbitrary time:

cardinality = 8
block.timestamp = 1050
time = 550
secondsAgo = 100

With the following state, for simplicity assume that tick
i
 ==observationTimestamp

i
, only the

timestamps are showed:

|350| |500| |700| |900| |1024| |150| |220| |300|

 ^index

Kyber Network - KyberSwap Elastic V2 - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

the function observeSingle(550, 100, 1024) will yield surrounding observations (4,0) (index 4
for beforeOrAt and index 0 for atOrAfter), instead of the expected (0,1), and return a wrong
tickCumulative value.

Description of changes:

Remove observeFromPoolAt, observe, and observeSingle functions, add
observeSingleFromPool to read a single observation from a pool. All observe functions use
block.timestamp as a time for.

6.2 Compiler and Library Versions
Design Low Version 1 Code Corrected

CS-KYBE2-002

Solc version 0.8.9 is not the most up-to-date version and has known bugs.

The smart contract libraries used by the project are:

"@openzeppelin/contracts": "4.3.1",
"@openzeppelin/contracts-upgradeable": "^4.6.0",

However, these libraries are neither up to date nor consistent with one another.

Code corrected:

The OZ libraries now both use version 4.3.1.

Regarding the solc compiler Kyber Network responded:

We didn’t upgrade the solidity version to latest as it could increase the possible changes for the
protocol.

Known bugs in solc 0.8.9 should not be triggered the assessed codebase.

6.3 Missing Sanity Checks
Design Low Version 1 Code Corrected

CS-KYBE2-004

The function TicksFeesReader.getNearestInitializedTicks is missing input sanitization for the
tick parameter. It can accept invalid ticks such that tick < MIN_TICK or tick > MAX_TICK. The
while loops won't terminate for invalid ticks.

Code corrected:

A check was added.

require(T.MIN_TICK <= tick && tick <= T.MAX_TICK, 'tick not in range');

Kyber Network - KyberSwap Elastic V2 - ChainSecurity - © Decentralized Security AG 14

https://github.com/ethereum/solidity/blob/0a0c389541c0f247691951edd64451be7145436c/docs/bugs_by_version.json#L1861
https://chainsecurity.com

6.4 Swap Amount Vs Price Limit Discrepancy
Correctness Low Version 1 Code Corrected

CS-KYBE2-005

The swap terminates in 2 cases: specified amount is exhausted or specified price limit is reached.
However, there exists an edge case when specified amount is just enough to reach a price limit. In that
case the Pool will rely on specified amount value as a limit, that will lead to computation of a new pool
state using estimateIncrementalLiquidity function. If the price limit was used, the new state
computation would be handled by calcIncrementalLiquidity function. The pool state is defined by
prices and computation of a new state using token amounts leads to more numeric conversions and thus
to less precision.

If a Pool has following initialized tick ranges: [a, b) [b, c). And current tick is b+1, a swap specifying
getSqrtRatioAtTick(b) as a limit would switch the liquidity to the value of [a, b) tick range. But a
swap swapQty needed to reach the same state would result in a pool state where the liquidity has not
being shifted.

Code corrected:

The computeSwapStep function uses calcIncrementalLiquidity when the usedAmount is equal
to specifiedAmount. Thus, the more precise price limit is used for this edge case.

6.5 maxNumTicks Computation Can Be Wrong
Design Low Version 1 Code Corrected

CS-KYBE2-006

In the functions TicksFeesReader.getTicksInRange , the computation of maxNumTicks can return
a value that is too low when length==0, thus making the returned memory array incomplete.

Example, when startTick < 0:

MAX_TICK = 2;
MIN_TICK = -2;
length = 0;
startTick = -1;
tickDistance = 1;

With this setting, maxNumTicks=3 and only the ticks -1, 0, 1 will be returned, missing the tick 2. In
getAllTicks for this case will be: maxNumTicks=7, while should be 5.

Example, when startTick > 0:

MAX_TICK = 5;
MIN_TICK = -5;
length = 0;
startTick = 2;
tickDistance = 2;

With this setting, maxNumTicks=1 and only the tick 2 will be returned, missing the ticks 4 and 5.

Code corrected:

Kyber Network - KyberSwap Elastic V2 - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

The cases from above are fixed.

6.6 secondsPerLiquidity of the First LP Starts
at UNIX Time 0
Correctness Low Version 1 Code Corrected

CS-KYBE2-007

When a liquidity provider (LP) opens the first position (LP
1
) of a pool at t

1
,

poolData.secondsPerLiquidityUpdateTime == 0 and _syncSecondsPerLiquidity() will
have no effect since no base liquidity is yet in the pool. When the second position is opened at t

2
,

_syncSecondsPerLiquidity() will update the state, but secondsElapsed will be equal to the time
delta from UNIX timestamp 0 until now (t

2
). So, the liquidity added by LP

1
 will be accounted for since 0

instead of t
1
.

Description of changes:

Always update the poolData.secondsPerLiquidityUpdateTime to the current block timestamp
whenever the secondsElapsed > 0.

6.7 Code Duplication
Informational Version 1 Code Corrected

CS-KYBE2-008

In the case !isToken0, the function SwapMath.calFinalPrice computes the same tmp value in
each of the subbranches. The computation can be carried out outside of the conditional structure.

Code corrected:

The common code was moved outside the branch bodies.

6.8 Wrong Comments
Informational Version 1 Code Corrected

CS-KYBE2-012

The natspec of the struct IBasePositionManager.MintParams still mentions the fee in bps, but
the fees have been updated to be in feeUnits.

Code corrected:

@param fee now correctly states that fee is in fee units.

Kyber Network - KyberSwap Elastic V2 - ChainSecurity - © Decentralized Security AG 16

https://chainsecurity.com

7 Informational
We utilize this section to point out informational findings that are less severe than issues. These
informational issues allow us to point out more theoretical findings. Their explanation hopefully improves
the overall understanding of the project's security. Furthermore, we point out findings which are unrelated
to security.

7.1 Gas Griefing Attack
Informational Version 1 Risk Accepted

CS-KYBE2-009

The swap function can perform multiple iterations of the while loop before terminating. Such execution
can cost a lot of gas. Malicious actor can bring the pool price to an extremely high or low value. This can
be done during the initial Pool unlock or via swap. While swap will require a lot of gas from attacker,
similar amount of gas will also be required to bring the price back to true value. Since the amount of
tokens needed to unlockPool is low, the cost of attack is small.

7.2 Oracle Limitations
Informational Version 1 Risk Accepted

CS-KYBE2-010

The tickCumulative from PoolOracle contract can be used to compute the time-weighted average tick
for a given period of time. If the price is computed from this tick, this is effectively a geometric mean of
the time-weighted average price (gm-TWAP). Compared to the arithmetic mean TWAP (am-TWAP),
gm-TWAP is more sensitive to upward price movements and less sensitive to downward price
movements. Any protocol that plans to use PoolOracle needs to be aware of this.

In addition, in PoS consensus, the multi-block price manipulations are possible on AMM protocols:

• https://chainsecurity.com/oracle-manipulation-after-merge/

• https://blog.uniswap.org/uniswap-v3-oracles

7.3 PoolOracle Observations Mapping Collision
Informational Version 1 Risk Accepted

CS-KYBE2-011

The mapping(address => Oracle.Observation[65535]) field in PoolOracle contract allows any
msg.sender to modifier consecutive 2**16 storage slots. This theoretically can write to storage slot 151
and thus overwrite the owner of the contract. Note that solidity does not check for storage pointer
overflows. However, this is a practically impossible attack, since it requires attacker to find an address
that corresponds to mapping storage slot with 240 fix bits.

Kyber Network - KyberSwap Elastic V2 - ChainSecurity - © Decentralized Security AG 17

https://chainsecurity.com/oracle-manipulation-after-merge/
https://blog.uniswap.org/uniswap-v3-oracles
https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.2.1 Factory
	2.2.2 Pool
	2.2.2.1 Formulas

	2.2.3 Ticks
	2.2.4 Router
	2.2.5 AntiSnipAttackPositionManager
	2.2.6 PoolOracle
	2.2.7 Trust model

	3 Limitations and use of report
	4 Terminology
	5 Findings
	5.1 DOMAIN_SEPARATOR Is Not Recomputed if chainId Changes

	6 Resolved Findings
	6.1 Oracle Observation Functions Parameters
	6.2 Compiler and Library Versions
	6.3 Missing Sanity Checks
	6.4 Swap Amount Vs Price Limit Discrepancy
	6.5 maxNumTicks Computation Can Be Wrong
	6.6 secondsPerLiquidity of the First LP Starts at UNIX Time 0
	6.7 Code Duplication
	6.8 Wrong Comments

	7 Informational
	7.1 Gas Griefing Attack
	7.2 Oracle Limitations
	7.3 PoolOracle Observations Mapping Collision

