

PUBLIC

Security Audit
of the POLKADOT CLAIMS Smart Contract

July 26, 2019

Produced for

by

Table Of Contents

Foreword . 1

Executive Summary . 1

Audit Overview . 2

1. Methodology . 2

2. Scope . 2

3. Audit Tasks . 2

4. Terminology . 3

5. Limitations . 3

System Overview . 4

1. System Roles . 4

2. Trust Model . 4

3. Assumptions about the Frozen Token contract . 4

Best Practices in the POLKADOT CLAIMS contract . 5

1. Hard Requirements . 5

2. Best Practices . 5

3. Smart Contract Test Suite . 6

Formal Functional Properties . 7

1. Property syntax and semantics . 7

2. Properties related to the WEB3 FOUNDATION contract . 7

2.1 A claimed Polkadot public key is immutable 3 Verified 7

2.2 Only the owner can modify the account vesting 3 Verified 7

2.3 Successful claims require an allocation 3 Verified . 7

2.4 The allocationIndicator is immutable 3 Verified . 8

2.5 Contract linking is correct 3 Verified . 8

2.6 Index indicator immutable after initialization 3 Verified 8

TOC https://chainsecurity.com

https://chainsecurity.com

2.7 Index immutable after initialization 3 Verified . 8

2.8 Amendments are restricted to the owner 3 Verified . 8

2.9 Proper access control for claims 3 Verified . 8

2.10 Ownership can only be modified by the owner 3 Verified 9

2.11 Set up period safety of indices 3 Verified . 9

2.12 Set up period safety of claims 3 Verified . 9

Security Issues . 10

1. Input verification and claim ownership scheme M 3 Acknowledged 10

Trust Issues . 11

1. Frozen Token address not hardcoded L 3 Acknowledged 11

Design Issues . 12

1. Struct optimization in Claim possible L 3 Fixed . 12

2. Index 0 is both valid and invalid L 3 Acknowledged . 12

3. Setup process can be interrupted L 3 Acknowledged . 12

4. Disregarded return value L 3 Fixed . 12

5. Unable to disable vesting L 3 Acknowledged . 13

6. Vesting amount not logged into event L 3 Fixed . 13

7. Zero vesting amount is allowed L 3 Fixed . 13

8. Inconsistent amount in the Vested event M 3 Fixed . 13

9. amend does not check balances anymore L 3 Fixed . 13

Recommendations / Suggestions . 14

Disclaimer . 15

ChainSecurity Audit Report TOC

Foreword

We would first and foremost like to thank the WEB3 FOUNDATION for giving us the opportunity to audit their
smart contracts. This document outlines our methodology, limitations, and results.

– ChainSecurity

Executive Summary

The WEB3 FOUNDATION engaged CHAINSECURITY to perform a security audit of the POLKADOT CLAIMS smart
contract. The contract will allow holders of the DOT allocation indicator token to claim their balances of DOTs
to a Polkadot public key ahead of Polkadot genesis. Additionally, the WEB3 FOUNDATION can set a parameter
to indicate vesting and amend addresses in emergency cases.

CHAINSECURITY audited the smart contract which will be deployed on the public Ethereum chain. To guar-
antee that the POLKADOT CLAIMS contract is secure and functionally correct, ChainSecurity formally verified
the contract’s code with respect to its intended specification using its state-of-the-art tool for verification of
functional requirements. Additionally, CHAINSECURITY’s experts conducted a thorough code review to ensure
that the contract conforms to the latest security best practices.

All reported issues have been addressed or acknowledged by the WEB3 FOUNDATION.

ChainSecurity Audit Report 1

Audit Overview

Methodology

CHAINSECURITY’s methodology in performing the security audit consisted of four chronologically executed
phases:

1. Understanding the existing documentation, purpose, and specifications of the smart contracts.

2. Executing automated tools to scan for common security vulnerabilities.

3. Manual analysis by one of our CHAINSECURITY experts covering both security and functional correctness
(based on the provided documentation) of the smart contracts.

4. Formalizing security and correctness properties that capture the intended behavior of the smart contracts
and checking these using analysis tools for Ethereum smart contracts.

5. Preparing the report with checked properties, vulnerability findings, and potential exploits.

Scope

Source code files received June 25, 2019

Git commit code provided as .zip

EVM version PETERSBURG

Initial Compiler SOLC compiler, version 0.5.9

Final code update received July 25, 2019

Final commit code provided as .zip

Final Compiler SOLC compiler, version 0.5.9

The repository is public and available at https://github.com/w3f/polkadot-claims.
The scope of the audit is limited to the following source code files.

File SHA-256 checksum

./Claims.sol f3035d1c3586846a15ab9a280eb49896c58522765561a8eb210ef4d7e8dcad22

For these files the following categories of issues were considered:

In Scope Issue Category Description

X� Security Issues Code vulnerabilities exploitable by malicious transactions

X� Trust Issues Potential issues due to actors with excessive rights to critical functions

X� Design Issues Implementation and design choices that do not conform to best practices

Audit Tasks

The security audit conducted by CHAINSECURITY consisted of the following tasks:

• Formalizing functional requirements pertaining to the immutability of the state after the initialization,
access-control requirements, and the safety of the contract set-up period.

• Formally verifying the correctness of the POLKADOT CLAIMS contract with respect to the formalized prop-
erties.

• Analyzing the POLKADOT CLAIMS contract for generic security vulnerabilities.

• A thorough manual audit of the POLKADOT CLAIMS contract for compliance with best security practices.

2 https://chainsecurity.com

https://chainsecurity.com

Terminology

For the purpose of this audit, CHAINSECURITY has adopted the following terminology. For security vulnerabili-
ties, we specify the likelihood, impact and severity (inspired by the OWASP risk rating methodology1).

Likelihood represents the likelihood of a security vulnerability to be encountered or exploited in the wild.

Impact specifies the technical and business-related consequences of an exploit.

Severity is derived based on the likelihood and the impact calculated previously.

We categorise the findings into four distinct categories, depending on their severities:

• L Low: can be considered less important

• M Medium: should be fixed

• H High: we strongly recommend fixing it before release

• C Critical: needs to be fixed before release

These severities are derived from the likelihood and the impact using the table below, following a standard
approach in risk assessment.

IMPACT

LIKELIHOOD High Medium Low

High C H M

Medium H M L

Low M L L

During the audit, concerns might arise or tools might flag certain security issues. After carefully inspecting
the potential security impact, we assign the following labels:

• 3 No Issue : no security impact

• 3 Fixed : the issue is addressed technically, for example by changing the source code

• 3 Addressed : the issue is mitigated non-technically, for example by improving the user documentation
and specification

• 3 Acknowledged : the issue is acknowledged and it is decided to be ignored, for example due to con-
flicting requirements ot other trade-offs in the system

Findings that are labelled as either 3 Fixed or 3 Addressed are resolved and therefore pose no security
threat. Their severity is still listed, but just to give the reader a quick overview of what kind of issues were found
during the audit.

Limitations

Security auditing cannot uncover all existing vulnerabilities; even an audit in which no vulnerabilities are found
is not a guarantee of a secure smart contract. However, auditing enables discovery of vulnerabilities that were
overlooked during development and areas where additional security measures are necessary.

In most cases, applications are either fully protected against a certain type of attack, or they are completely
unprotected against it. Some of the issues may affect the entire smart contract application, while some lack
protection only in certain areas. This is why we carry out a source code review aimed at determining all
locations that need to be fixed. Within the customer-determined timeframe, CHAINSECURITY has performed
auditing in order to discover as many vulnerabilities as possible.

1https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology

ChainSecurity Audit Report 3

https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology

System Overview

The WEB3 FOUNDATION set up a smart contract, called Claims, to migrate the allocation of DOT from Ethereum
accounts to Polkadot accounts. The Claims contract is linked to the already deployed token contract that
contains user balances. Any user with a positive balance in the token contract can call claim() function which
links the existing token balance to the specified vesting and/or non-vesting Polkadot public keys. Additionally,
an index used as a short address is given to each Ethereum account. The deployer also specifies a setup
phase to delay that user can claim or assign indices. This ensures that the initial state of the contract can be
set up by the admin before allowing the public to write to the storage.

The contract has an owner role, which can execute three privileged functions. The first function allows
the WEB3 FOUNDATION to amend an Ethereum address. This is used as an emergency function in case an
account has been lost or compromised and such an amendment can be changed by the contract’s owner
as long as the amended account has not been claimed. The second privileged function allows the WEB3
FOUNDATION to set a vesting amount or increase a vesting amount for specific accounts. The vesting is not
part of the Ethereum smart contract. It is used and enforced inside Polkadot.The third admin function is able
to freeze claiming forever.

Last but not least, a function called assignIndices() can be called by anyone and assigns the indices
(mentioned before) to addresses. The final state of this contract will be used to initialize the genesis block for
a Polkadot blockchain.

System Roles

In this section we outline the different roles and their permissions and purpose within the system.

Owner The owner deploys the Claims contract. The owner can call amend() to amend allocation holder
address in extreme circumstances. Further calls to amend() update existing amendments. The owner
can call setVesting() to set the vesting of unclaimed addresses. The owner can transfer the contract
ownership to another address.

Allocation Holder Allocation holders or the amendment accounts can claim DOT token on Polkadot blockchain
by specifying their Polkadot public key.

Claimer Claimers are able to change the state of the contract by associating a Polkadot public key to an
allocation balance.

Trust Model

The owner is a trusted role in the Claims contract. Using the amend function the owner can redistribute funds
arbitrarily. Furthermore, the owner can enable vesting for any account. The owner is trusted to use these
functions correctly.

Assumptions about the Frozen Token contract

The Frozen Token contract holds the current token balances of users and is used as a data source in the
POLKADOT CLAIMS contract. It has previously been audited and is outside the scope of this audit.

For the correctness of the POLKADOT CLAIMS contract, we assume that the Frozen Token contract has no
no untrusted accounts with a positive token balance To justify this assumption, CHAINSECURITY investigated
the state of the contract at the time of writing which is detailed below.

Current State of Frozen Token CHAINSECURITY inspected the state of the Frozen Token contract at block
8071600. At this time there are only two liquid accounts with positive token balances. We believe these
accounts are controlled by the WEB3 FOUNDATION. Hence, the necessary security assumption is currently
fulfilled.

Consequences of potential misbehavior If the Frozen Token would not adhere to the trust model above, the
system could be attacked in certain ways. For example, a liquid account could create empty claims, which
could be used to spam the list of claims. However, this would not benefit a potential attacker and is therefore
unlikely.

4 https://chainsecurity.com

https://chainsecurity.com

Best Practices in the POLKADOT CLAIMS contract

We list Hard Requirements which must be fulfilled in order for us to start the audit. Furthermore, we provide a
list of best practices, the following of which allows the audit efforts to be focused on project-specific issues.

Hard Requirements

The fulfillment of the requirements below ensures that CHAINSECURITY can start the audit.

X� All files and software for the audit have been provided to CHAINSECURITY

The project needs to be complete. Code must be frozen and the relevant commit or files must have
been sent to CHAINSECURITY. All third party code (like libraries) and third-party software (like the solidity
compiler) must be exactly specified or made available. Third party code can be located in a folder
separated from client code (and the separation needs to be clear) or included as dependencies. If
dependencies are used, the version(s) need to be fixed.

X� The code must compile and the required compiler version must be specified. When using outdated
versions with known issues, clear reasons for using these versions are being provided.

� There are migration/deployment scripts executable by CHAINSECURITY and their use is documented.
EXPLANATION: There are deployment scripts but the relevant part is commented out.

� The code is provided as a Git repository to allow reviewing of future code changes.
EXPLANATION: The code was provided as a zip file without any repository files.

Best Practices

These requirements are complimentary to the hard requirements and can further enhance the efficiency of the
audit.

X� There are no compiler warnings, or warnings are documented.

X� Code duplication is minimal, or justified and documented.

X� The output of the build process (including possible flattened files) is not committed to the Git repository.

X� The project only contains audit-related files, or, if this is not possible, a meaningful distinction is made
between modules that have to be audited and modules that CHAINSECURITY should assume are correct
and out-of-scope.

X� There is no dead code.

X� The code is well-documented.

� The high-level specification is thorough and enables a quick understanding of the project without any
need to look at the code.
EXPLANATION: Interaction was needed to understand all details of the project but the communication was
fast and professional.

� Both the code documentation and the high-level specification are up-to-date with respect to the code
version CHAINSECURITY audits.
EXPLANATION: Some details have only been provided in the direct interaction. Especially, on the deploy-
ment process and some details on specific code parts.

X� Functions are grouped together according to either the Solidity guidelines2, or to their functionality.
2https://solidity.readthedocs.io/en/v0.4.24/style-guide.html#order-of-functions

ChainSecurity Audit Report 5

https://solidity.readthedocs.io/en/v0.4.24/style-guide.html#order-of-functions

Smart Contract Test Suite

In this section, CHAINSECURITY comments on the test suite of the POLKADOT CLAIMS contract. While the
test suite is not a component of the audit, a thorough test suite indicates that the code likely contains fewer
correctness issues.

The WEB3 FOUNDATION provided 19 truffle tests, covering the relevant parts of the POLKADOT CLAIMS
contract.

6 https://chainsecurity.com

https://chainsecurity.com

Formal Functional Properties

CHAINSECURITY investigated selected functional requirements. Below, we list the considered requirements
and indicate whether they have been successfully verified (marked with label 3 Verified) or not (marked with
label 5 Does not hold).

Property syntax and semantics

The formalization of the properties uses the syntax of Solidity extended with temporal operators (such as
always and prev) and additional logical connectives (such as implication, written with ==>). For example,
always quantifies over all contract states and prev refers to the previous state (before a transaction has
executed). The expression FUNCTION == Claims.claim(address,bytes32) evaluates to true if the cur-
rent transaction is a call to function claim(address,bytes32) of contract Claims. Finally, the expression
Claims.claim(address,bytes32)[0] returns the first argument of function Claims.claim(address,bytes32).

The properties are interpreted over a sequence of contract states, induced by executing a given sequence
of transactions. A property is verified if it holds for any possible sequences of contract states.

Properties related to the WEB3 FOUNDATION contract

In the formalization of the properties, the length of the claimed array is always restricted to an upper bound
of 10000. To capture this, we use the idiom always(always(Claims.claimed < 10000)==> prop). This
property holds if always(prop) holds for any sequence of states where the array Claims.claimed never
exceeded the length 10000. This is necessary to verify the properties, due to the storage allocation scheme
used in the Ethereum Virtual Machine (EVM). Namely, an unbounded array can theoretically overwrite any
other variable in storage, resulting in violations of the considered properties. The upper bound of 10000 was
chosen after consultation with WEB3 FOUNDATION.

Furthermore, in the properties below, X represents an arbitrary value (such as 0x123).

2.1 A claimed Polkadot public key is immutable 3 Verified

If the Polkadot public key has been set for any claim, then that public key must remain the same. Hence, it can
only be changed if it previously had not been set.

always(
always(Claims.claimed < 10000)

==> ((prev(Claims.claims[X].pubKey) == Claims.claims[X].pubKey)
|| (prev(Claims.claims[X].pubKey) == 0)));

2.2 Only the owner can modify the account vesting 3 Verified

Each account has a vesting field. Any modification to this field can only be performed by the owner of the
Claims contract.

always(
always(Claims.claimed < 10000)

==> (Claims.claims[X].vested != prev(Claims.claims[X].vested))
==> (msg.sender == Claims.owner));

2.3 Successful claims require an allocation 3 Verified

A claim associated with an Ethereum address is only possible if the Frozen Token balance of that Ethereum
address is positive.

always(
always(Claims.claimed < 10000)

==> (FUNCTION == Claims.claim(address,bytes32))
==> (FrozenToken.accounts[Claims.claim(address,bytes32)[0]].balance

> 0));

ChainSecurity Audit Report 7

2.4 The allocationIndicator is immutable 3 Verified

The Claims contract contains a variable called allocationIndicator which points to the Frozen Token contract.
This variable cannot be modified after deployment.

always(
always(Claims.claimed < 10000)

==> (prev(Claims.allocationIndicator) == Claims.allocationIndicator));

2.5 Contract linking is correct 3 Verified

The property above assures the immutability of the allocationIndicator, while this property assures the correct-
ness of the variable. In particular it is always set to value provided in the deployment.

always(
always(Claims.claimed < 10000)

==> (Claims.allocationIndicator == FrozenToken));

We also note that this property implies that the allocationIndicator variable is immutable.

2.6 Index indicator immutable after initialization 3 Verified

Every claim is associated with an index. The hasIndex field indicates whether the index has been initialized.
Hence, the hasIndex field should not be resettable.

always(
always(Claims.claimed < 10000)
==> ((prev(Claims.claims[0x123].hasIndex) == Claims.claims[0x123].hasIndex)

|| (prev(Claims.claims[0x123].hasIndex) == false)));

2.7 Index immutable after initialization 3 Verified

Analogously to the property above this property checks the immutability of the index based on the hasIndex
field.

always(
always(Claims.claimed < 10000)

==> ((prev(Claims.claims[X].index) == Claims.claims[X].index)
|| (prev(Claims.claims[X].hasIndex) == false)));

2.8 Amendments are restricted to the owner 3 Verified

Any changes to the amendments are only possible if the caller was the owner of the Claims contract.

always(
always(Claims.claimed < 10000)

==> (prev(Claims.amended[X]) != Claims.amended[X])
==> (msg.sender == Claims.owner));

2.9 Proper access control for claims 3 Verified

The function claim(address,bytes32) can only be called if a user calls it for its own address (hence, its
address matches the first argument of the function) or the caller is the amended address for the given allocation.

always(
always(Claims.claimed < 10000)
==> (FUNCTION == Claims.claim(address,bytes32))

==> ((msg.sender == Claims.claim(address,bytes32)[0])
|| (msg.sender ==

Claims.amended[Claims.claim(address,bytes32)[0]])));

8 https://chainsecurity.com

https://chainsecurity.com

2.10 Ownership can only be modified by the owner 3 Verified

Only the current contract owner can set the new owner of the Claims contract.

always(
always(Claims.claimed < 10000)

==> ((prev(Claims.owner) != Claims.owner)
==> (msg.sender == prev(Claims.owner))));

2.11 Set up period safety of indices 3 Verified

Only the current contract owner can call the function assignIndices() during the setup period.

always(
always(Claims.claimed < 10000)

==> (((block.number < Claims.endSetUpDelay) &&
(FUNCTION == Claims.assignIndices(address[])))

==> (msg.sender == prev(Claims.owner))
)

);

2.12 Set up period safety of claims 3 Verified

The function claim() can only be called after the setup period.

always(
always(Claims.claimed < 10000)

==> ((FUNCTION == Claims.claim(address,bytes32))
==> (block.number >= Claims.endSetUpDelay)));

ChainSecurity Audit Report 9

Security Issues

This section reports the security issues found during the audit.

Input verification and claim ownership scheme M 3 Acknowledged

Function setOwner(_new) in contract Owned is used to set a new account as owner. This function does not
validate the argument _new. As mistakes can happen, CHAINSECURITY suggests the WEB3 FOUNDATION
to ensure that the argument _new does not equal address(0). Additionally, the WEB3 FOUNDATION could
consider using a claim ownership scheme to ensure that the new address is controlled by an active user.

Likelihood: Low
Impact: High

Acknowledged: The WEB3 FOUNDATION acknowledged that no change will be applied in the interest of keep-
ing the contract as minimal as possible. The WEB3 FOUNDATION will take special care in case the function
becomes necessary.

10 https://chainsecurity.com

https://chainsecurity.com

Trust Issues

This section reports functionality that is not enforced by the smart contract and hence correctness relies on
additional trust assumptions.

Frozen Token address not hardcoded L 3 Acknowledged

The Frozen Token contract is already deployed on mainnet and hence, known. Therefore, the WEB3 FOUN-
DATION could create more trust by hardcoding the address in the Claims contract, instead of providing it as
constructor argument.

Acknowledged: The WEB3 FOUNDATION acknowledged that the address is not hardcoded in order to facil-
itate testing and deployment on test networks at different addresses. The WEB3 FOUNDATION will consider
hardcoding before mainnet deployment.

ChainSecurity Audit Report 11

Design Issues

This section lists general recommendations about the design and style of the POLKADOT CLAIMS contract.
These recommendations highlight possible ways for the WEB3 FOUNDATION to improve the code further.

Struct optimization in Claim possible L 3 Fixed

The WEB3 FOUNDATION uses the struct Claim in Claims contract.

struct Claim {
bool hasIndex; // Has the index been set?
uint index; // Index for short address.
bytes32 polkadot; // Polkadot public key.
bool vested; // Is this allocation vested?

}

If the variables would be packed tightly (the two booleans together), the WEB3 FOUNDATION could save
one storage slot. This would lower the gas costs during contract execution.

Fixed: The WEB3 FOUNDATION fixed the problem. The struct was updated to a version that cannot be opti-
mized further.

Index 0 is both valid and invalid L 3 Acknowledged

The WEB3 FOUNDATION uses claims.index == 0 and claims.hasIndex == false to check if the given
index is not used. Only then, it is assigned to a user.

However, the first execution of either assignIndices() or claim() will assign the index 0 to an Ethereum
address. Hence, 0 is a valid index in this context. Such an ambiguity could lead to mistakes on the client side
when processing the state of the smart contract.

Acknowledged: The WEB3 FOUNDATION acknowledged that the use of index 0 is what necessitated the ad-
dition of the hasIndex boolean.

Setup process can be interrupted L 3 Acknowledged

The WEB3 FOUNDATION needs to call setVesting() and assignIndices() shortly after deployment of the
Claims contract and before any other account calls claim() or assignIndices(). Otherwise, the first 925
indices can not be assigned by the WEB3 FOUNDATION to special addresses. Additionally, it is impossible to
set vested to true for accounts that already called the claim() function.

Acknowledged: The WEB3 FOUNDATION acknowledged that they will have scripts to do the entire setup. This
provides a buffer during which no one can interrupt the setup of the initial state of the contract and force a
re-deployment by the WEB3 FOUNDATION.

Disregarded return value L 3 Fixed

The WEB3 FOUNDATION implemented the function assignNextIndex() which returns a boolean. This function
is called from the following functions:

• claim()

• assignIndices()

In both of the above function calls the return value is not checked. The WEB3 FOUNDATION should evaluate
if the return value is needed and if so, check it.

12 https://chainsecurity.com

https://chainsecurity.com

Fixed: The WEB3 FOUNDATION fixed the problem by modifying the claim() and assignIndices() function
declarations. These functions no longer return any value.

Unable to disable vesting L 3 Acknowledged

The WEB3 FOUNDATION can call the setVesting function to set the vesting status for provided accounts.
Once the vesting is set, it cannot be changed or reverted.

However, in case of any mistake the WEB3 FOUNDATION may want to revert the vesting status. Currently, it
is not possible to revert the vesting status.

Acknowledged: The WEB3 FOUNDATION acknowledged that this is intended behavior. The WEB3 FOUNDA-
TION do not want to disable vesting. Since vesting is part of the setup procedure, in the case of mistakes the
WEB3 FOUNDATION can deploy a new contract.

Vesting amount not logged into event L 3 Fixed

The setVesting() function takes two arrays as arguments. The first argument is an array with Ethereum
addresses and the second array contains the corresponding vesting amounts.

Once the vesting of an Ethereum address is updated, the contract emits Vested event. However, the
current event only logs the Ethereum address. It could also include the vesting amount corresponding to that
Ethereum address.

Fixed: In the latest version, the WEB3 FOUNDATION logs the vesting amount.

Zero vesting amount is allowed L 3 Fixed

In the setVesting() function the owner is allowed to send 0 (zero) as a value in the _vestingAmts array.
Doing this would emit the Vested event for the corresponding address even though there is no vested amount.
The owner could additionally call setVesting() again for the same address. CHAINSECURITY recommends
adding a check to ensure that the vesting amount is not 0 (zero).

Fixed: The WEB3 FOUNDATION does not allow zero vesting anymore.

Inconsistent amount in the Vested event M 3 Fixed

The WEB3 FOUNDATION emits a Vested event in setVesting and increaseVesting. In setVesting the
second parameter for this event _vestingAmts[i] is the total vesting amount. In increaseVesting this
parameter is the additional amount (delta). These result in inconsistent and unreliable events.

Fixed: The WEB3 FOUNDATION introduced a new event called VestedIncreased.

amend does not check balances anymore L 3 Fixed

After a code update, the WEB3 FOUNDATION did not check if an address has a DOT allocation in the amend
function.

Fixed: The WEB3 FOUNDATION added the check again.

ChainSecurity Audit Report 13

Recommendations / Suggestions

X� The WEB3 FOUNDATION sets two variables in the constructor.

owner = _owner;
allocationIndicator = FrozenToken(_allocations);

There are no sanity checks for these two addresses. The WEB3 FOUNDATION could consider checking
for address(0) to avoid any mistakes when deploying.

� The WEB3 FOUNDATION makes intense use of loops to handle the batch functions. It might be useful to
set a boundary on the length of the input parameters to avoid running a loop for a long time and in the
end, run out of gas. At least, the WEB3 FOUNDATION needs to know the maximum length of the arrays it
can pass into the functions. Exemplary, for assignIndices() the maximum array length will be roughly
around 130. If too many elements are passed into the function, all gas will be consumed with, in the end,
no state change at all.

� The amend function is called along with a list of addresses to be amended including the new addresses.
However, when any of the addresses present in the list has been claimed before the whole transaction
will revert. In such a case it would be non-trivial to identify which address caused the transaction to
revert. Alternatively, events for failures could be emitted and valid amendments could be performed.

X� The WEB3 FOUNDATION sometimes specifies a return value and sometimes not. CHAINSECURITY does
not know if the return value is needed in off-chain scripts. But if there is no special need, CHAINSECURITY
suggest to use return values consistent throughout the code.

� The POLKADOT CLAIMS contract initialization process is protected using endSetUpDelay (delay in block
number), which allows only the owner of the contract to set the indices and set vesting. The WEB3
FOUNDATION puts an unnecessary time restriction to his own process. In case the WEB3 FOUNDATION
is unable to complete it, the WEB3 FOUNDATION have to re-start the process or redeploy.

CHAINSECURITY suggests having this initialization stage protected using a boolean variable and resetting
it after finishing the initialization. This would give more control over the setup and could be easier and
more efficient to implement.

� The WEB3 FOUNDATION added an increase vesting function to mitigate front-running and allowed to
increase the vesting amount. In case of mistakes there is no way to decrease vesting apart from call-
ing setVesting (if the account did not claim already), which is vulnerable to front-running. The WEB3
FOUNDATION can consider adding a decreaseVesting function.

14 https://chainsecurity.com

https://chainsecurity.com

Disclaimer

UPON REQUEST BY THE WEB3 FOUNDATION, CHAINSECURITY LTD. AGREES TO MAKE THIS AUDIT
REPORT PUBLIC. THE CONTENT OF THIS AUDIT REPORT IS PROVIDED “AS IS”, WITHOUT REPRE-
SENTATIONS AND WARRANTIES OF ANY KIND, AND CHAINSECURITY LTD. DISCLAIMS ANY LIABILITY
FOR DAMAGE ARISING OUT OF, OR IN CONNECTION WITH, THIS AUDIT REPORT. COPYRIGHT OF
THIS REPORT REMAINS WITH CHAINSECURITY LTD..

ChainSecurity Audit Report 15

	Foreword
	Executive Summary
	Audit Overview
	Methodology
	Scope
	Audit Tasks
	Terminology
	Limitations

	System Overview
	System Roles
	Trust Model
	Assumptions about the Frozen Token contract

	Best Practices in the Polkadot Claims contract
	Hard Requirements
	Best Practices
	Smart Contract Test Suite

	Formal Functional Properties
	Property syntax and semantics
	Properties related to the Web3 Foundation contract
	A claimed Polkadot public key is immutable push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Verifieddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Only the owner can modify the account vesting push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Verifieddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Successful claims require an allocation push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Verifieddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	The allocationIndicator is immutable push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Verifieddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Contract linking is correct push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Verifieddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Index indicator immutable after initialization push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Verifieddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Index immutable after initialization push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Verifieddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Amendments are restricted to the owner push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Verifieddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Proper access control for claims push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Verifieddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Ownership can only be modified by the owner push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Verifieddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Set up period safety of indices push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Verifieddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Set up period safety of claims push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Verifieddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth

	Security Issues
	Input verification and claim ownership scheme repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Acknowledgedcyanpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth

	Trust Issues
	Frozen Token address not hardcoded repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Acknowledgedcyanpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth

	Design Issues
	Struct optimization in Claim possible repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Fixeddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Index 0 is both valid and invalid repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Acknowledgedcyanpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Setup process can be interrupted repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Acknowledgedcyanpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Disregarded return value repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Fixeddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Unable to disable vesting repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Acknowledgedcyanpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Vesting amount not logged into event repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Fixeddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Zero vesting amount is allowed repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Fixeddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Inconsistent amount in the !Vested! event repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Fixeddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	!amend! does not check balances anymore repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Fixeddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth

	Recommendations / Suggestions
	Disclaimer

